• 제목/요약/키워드: Lysine methylation

검색결과 33건 처리시간 0.026초

The role of EZH1 and EZH2 in development and cancer

  • Soo Hyun, Lee;Yingying, Li;Hanbyeol, Kim;Seounghyun, Eum;Kyumin, Park;Chul-Hwan, Lee
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.595-601
    • /
    • 2022
  • Polycomb Repressive Complex 2 (PRC2) exhibits key roles in mammalian development through its temporospatial repression of gene expression. EZH1 or EZH2 is the catalytic subunit of PRC2 that mediates the mono-, di- and tri-methylation of histone H3 lysine 27 (H3K27me1/2/3), H3K27me2/me3 being a hallmark of facultative heterochromatin. PRC2 is a chromatin-modifying enzyme that is recruited to a limited number of "nucleation sites", spreads H3K27 methylation and fosters chromatin compaction. EZH1 and EZH2 exhibit differences in their expression patterns, levels of histone methyltransferase activity (HMT) in the context of PRC2, and DNA/nucleosome binding activity. This suggests that their roles in heterochromatin formation are disparate. Dysregulation of PRC2 activity leads to aberrant gene expression and is implicated in cancer and developmental diseases. In this review, we discuss the distinct function of PRC2/EZH1 and PRC2/EZH2 in the early and late developmental stages. We then discuss the cancers associated with PRC2/EZH1 and PRC2/EZH2.

Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis

  • Min-Ji Park;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • 제62권1호
    • /
    • pp.98-116
    • /
    • 2024
  • Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.

Saccharomyces cerevisiae의 Swd2와 Set1의 결합이 Swd2의 이중적인 기능에 미치는 영향 (The effect of Swd2's binding to Set1 on the dual functions of Swd2 in Saccharomyces cerevisiae)

  • 박신애;이정신
    • 미생물학회지
    • /
    • 제53권4호
    • /
    • pp.286-291
    • /
    • 2017
  • 진핵 세포에서 히스톤의 변형은 크로마틴 구조를 조절하는 데에 있어서 중요한 메커니즘이다. Set1 복합체에 의한 히스톤 H3의 네 번째 라이신 잔기(H3K4)에 발생하는 메틸화는 다양하게 잘 알려져 있는 히스톤 변형 중 하나이다. Set1 complex는 H2B의 유비퀴틴화에 의존적으로 발생하는 H3K4 메틸화에 중요하다고 알려진 Swd2를 포함하여 7개의 소단위 단백질을 가지고 있다. Swd2는 Set1의 RNA recognition motif (RRM) 도메인 근처에 결합하여 Set1의 활성을 조절하고, 또 RNA의 3' 말단 형성에 관여하는 CPF (Cleavage and Polyadenylation Factors) 복합체의 구성성분이라고 보고되었다. 최근 보고들에 따르면, 이런 Swd2의 이중적인 기능이 서로 독립적으로 작용하며, Swd2 결실돌연변이 균주가 살지 못하는 이유가 CPF 복합체의 구성성분으로써의 기능 때문이라고 알려져 있다. 본 연구에서 우리는 Swd2가 Set1의 RRM 도메인에 결합하여 Set1의 활성을 조절할 수 있을 뿐만 아니라, Set1의 안정성에도 영향을 줄 수 있음을 발견하였다. 또 우리는 Swd2가 결합할 수 없는 truncated-Set1을 가지고 있는 ${\Delta}swd2$ 돌연변이가 사멸하지 않고 정상적으로 자라는 것을 관찰하였다. 이런 결과들은 Saccharomyces cerevisiae에서 H3K4 메틸화와 RNA 3' 말단 형성과정에서의 Swd2의 이중적인 기능이 서로 독립적인 것이 아님을 제안하다.

In vitro Translation and Methylation of Iso-1-Cytochrome C from Saccharomyces Cerevisiae

  • Paik, Woon-Ki;Park, Kwang-Sook;Tuck, Martin;Kim, Sang-Duk
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.505.1-505
    • /
    • 1986
  • The gene for iso-1-cytochrome c for Saccharomyces cerevisiae was recloned into a pSP65 vector containing an active bacteriophage SP6 promoter. The iso-1-cytochrome c gene was cloned as an 856 bp Xho 1-Hind III fragment. When the resulting plasmid was digested at the Hind 111 site 279 bases downstream from the termination codon of the gene and transcribed in vitro using SP6 RNA polymerase, full length transcripts were produced. The SP6 iso-1-cytochrome c mRNA was translated using a rabbit reticulocyte lysate system and the protein products analyzed on SDS polyacrylamide gels. One major band was detected by autofluorography. This band was found to have a molecular weight of 12,000 Da and coincided with the Coomassie staining band of apocytochrome c from S. cerebisiae. The product was also shown to be identical with that of standard yeast apocytochrome c on an isoelectric focusing gel. The in vitro synthesized iso-a-cytochrome c was methylated by adding partially purified S-adenosyl-L-methionine . protein-lysine N-methyltransferase (Protein methylase III; EC 2.1.1.43) from S. cerevisiae along with S-adenosyl-L-methionine to the in vitro translation mixtures. The methylation was shown to be inhibited by the addition of the methylase inhibitor S-adenosyl-L-homocysteine or the protein synthesis inhibitor pu omycin. The methyl derivatives in the protein were identified as $\varepsilon$-N-mono, di and trimethyllysine by amino acid analysis. The molar ratio of methyl groups incorporated to that of cytochrome c molecules synthesized showed that 23% of the translated cytochrome c molecules were methylated by protein methylase III.

  • PDF

Mutation Analysis of IDH1/2 Genes in Unselected De novo Acute Myeloid Leukaemia Patients in India - Identification of A Novel IDH2 Mutation

  • Raveendran, Sureshkumar;Sarojam, Santhi;Vijay, Sangeetha;Geetha, Aswathy Chandran;Sreedharan, Jayadevan;Narayanan, Geetha;Sreedharan, Hariharan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.4095-4101
    • /
    • 2015
  • IDH1/2 mutations which result in alternation in DNA methylation pattern are one of the most common methylation associated mutations in Acute myeloid leukaemia. IDH1/2 mutations frequently associated with higher platelet level, normal cytogentics and NPM1 mutations. Here we analyzed IDH1/2 mutations in 200 newly diagnosed unselected Indian adult AML patients and investigated their correlation with clinical, cytogenetic parameters along with cooperating NPM1 mutation. We detected 5.5% and 4% mutations in IDH1/2 genes, respectively. Except IDH2 c.515_516GG>AA mutation, all the other identified mutations were reported mutations. Similar to reported c.515G>A mutation, the novel c.515_516GG>AA mutation replaces $172^{nd}$ arginine to lysine in the active site of the enzyme. Even though there was a preponderance of IDH1/2 mutations in NK-AML, cytogenetically abnormal patients also harboured IDH1/2 mutations. IDH1 mutations showed significant higher platelet count and NPM1 mutations. IDH2 mutated patients displayed infrequent NPM1 mutations and lower WBC count. All the NPM1 mutations in the IDH1/2 mutated cases showed type A mutation. The present data suggest that IDH1/2 mutations are associated with normal cytogenetics and type A NPM1 mutations in adult Indian AML patients.

히스톤 H3K27 변형과 유전자 전사 (Histone H3K27 Modifications and Gene Transcription)

  • 김애리
    • 생명과학회지
    • /
    • 제21권4호
    • /
    • pp.616-620
    • /
    • 2011
  • 진핵세포의 크로마틴에서 히스톤 단백질 H3와 H4의 라이신 잔기는 공유결합에 의해 변형된다. 히스톤 H3에서 27번 라이신은 아세틸화되거나(H3K27ac) 세 가지 단계로 메틸화가 될 수 있으며(H3K27me1, H3K27me2, H3K27me3), 이러한 H3K27의 변형들은 각각 독특한 형태로 유전자 전사 및 크로마틴 구조와 관련된다. 일반적으로 H3K27ac과 H3K27me1은 좌위조절부위나 활발히 전사되는 유전자처럼 활성 크로마틴에서 나타나고, 이에 반해 전사가 일어나지 않은 유전자는 높은 수준의 H3K27me2과 H3K27me3이 관찰된다. 이러한 변형들은 각각 다른 종류의 변형효소에 의해 촉매된다. 최근 연구들은 유전자 전사 및 크로마틴 구조 형성에서 H3K27의 네 가지 변형들 사이에 상관 관계가 있음을 제시하고 있다.

Downregulation of JMJD2a and LSD1 is involved in CK2 inhibition-mediated cellular senescence through the p53-SUV39h1 pathway

  • Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.92-97
    • /
    • 2022
  • Lysine methylation is one of the most important histone modifications that modulate chromatin structure. In the present study, the roles of the histone lysine demethylases JMJD2a and LSD1 in CK2 downregulation-mediated senescence were investigated. The ectopic expression of JMJD2a and LSD1 suppressed the induction of senescence-associated β-galactosidase activity and heterochromatin foci formation as well as the reduction of colony-forming and cell migration ability mediated by CK2 knockdown. CK2 downregulation inhibited JMJD2a and LSD1 expression by activating the mammalian target of rapamycin (mTOR)-ribosomal p70 S6 kinase (p70S6K) pathway. In addition, the down-regulation of JMJD2a and LSD1 was involved in activating the p53-p21Cip1/WAF1-SUV39h1-trimethylation of the histone H3 Lys9 (H3K9me3) pathway in CK2-downregulated cells. Further, CK2 downregulation-mediated JMJD2a and LSD1 reduction was found to stimulate the dimethylation of Lys370 on p53 (p53K370me2) and nuclear import of SUV39h1. Therefore, this study indicated that CK2 downregulation reduces JMJD2a and LSD1 expression by activating mTOR, resulting in H3K9me3 induction by increasing the p53K370me2-dependent nuclear import of SUV39h1. These results suggest that CK2 is a potential therapeutic target for age-related diseases.

An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks

  • Lee, Jeoung Eun;Chung, Young Gie;Eum, Jin Hee;Lee, Yumie;Lee, Dong Ryul
    • BMB Reports
    • /
    • 제49권4호
    • /
    • pp.197-198
    • /
    • 2016
  • Although three different research groups have reported successful derivations of human somatic cell nuclear transfer-derived embryonic stem cell (SCNT-ESC) lines using fetal, neonatal and adult fibroblasts, the extremely poor development of cloned embryos has hindered its potential applications in regenerative medicine. Recently, however, our group discovered that the severe methylation of lysine 9 in Histone H3 in a human somatic cell genome was a major SCNT reprogramming barrier, and the overexpression of KDM4A, a H3K9me3 demethylase, significantly improved the blastocyst formation of SCNT embryos. In particular, by applying this new approach, we were able to produce multiple SCNT-ES cell lines using oocytes obtained from donors whose eggs previously failed to develop to the blastocyst stage. Moreover, the success rate was closer to 25%, which is comparable to that of IVF embryos, so that our new human SCNT method seems to be a practical approach to establishing a pluripotent stem cell bank for the general public as well as for individual patients.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.