• Title/Summary/Keyword: Lysine cell mass

Search Result 14, Processing Time 0.018 seconds

Recombinant production of human glucagon-like peptide-1 mutant (인간 Glucagon-like Peptide-1 변이체의 재조합 생산)

  • Kim, Sung-Gun;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.237-243
    • /
    • 2014
  • Human Glucagon like peptide-1 (GLP-1) is an incretin hormone that promotes secretion of insulin. In order to eliminate the formation of the soluble aggregate, Ala19 in GLP-1 was substituted with Thr, resulting in a GLP-1 mutant GLP-1A19T. The gene synthesis of GLP-1A19T and the fusion of 6-lysine tagged ubiquitin gene were accomplished by using the overlap extension polymerase chain reaction. The ubiquitin fused GLP-1A19T (K6UbGLP-1A19T) is expressed as form of inclusion body with little formation of the soluble aggregation in recombinant E. coli. In order to produce K6UbGLP-1A19T in large amounts, fed-batch fermentation was carried out in a pH-stat feeding strategy. Maximum dry cell weight of 87.7 g/L and 20.4% of specific K6UbGLP-1A19T content were obtained. Solid-phase refolding using a cation exchanger was carried out to renature K6UbGLP-1A19T. The refolded K6UbGLP-1A19T aggregated little and was released GLP-1A19T by on-column cleavage with ubiquitin-specific protease-1. The molecular mass of GLP-1A19T showed an accurate agreement with its theoretical molecular mass.

Mass-Based Metabolomic Analysis of Lactobacillus sakei and Its Growth Media at Different Growth Phases

  • Lee, Sang Bong;Rhee, Young Kyoung;Gu, Eun-Ji;Kim, Dong-Wook;Jang, Gwang-Ju;Song, Seong-Hwa;Lee, Jae-In;Kim, Bo-Min;Lee, Hyeon-Jeong;Hong, Hee-Do;Cho, Chang-Won;Kim, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.925-932
    • /
    • 2017
  • Changes in the metabolite profiles of Lactobacillus sakei and its growth media, based on different culture times (0, 6, 12, and 24 h), were investigated using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS with partial least squares discriminant analysis, in order to understand the growth characteristics of this organism. Cell and media samples of L. sakei were significantly separated on PLS-DA score plots. Cell and media metabolites, including sugars, amino acids, and organic acids, were identified as major metabolites contributing to the difference among samples. The alteration of cell and media metabolites during cell growth was strongly associated with energy production. Glucose, fructose, carnitine, tryptophan, and malic acid in the growth media were used as primary energy sources during the initial growth stage, but after the exhaustion of these energy sources, L. sakei could utilize other sources such as trehalose, citric acid, and lysine in the cell. The change in the levels of these energy sources was inversely similar to the energy production, especially ATP. Based on these identified metabolites, the metabolomic pathway associated with energy production through lactic acid fermentation was proposed. Although further studies are required, these results suggest that MS-based metabolomic analysis might be a useful tool for understanding the growth characteristics of L. sakei, the most important bacterium associated with meat and vegetable fermentation, during growth.

Degradation Kinetics of Carbohydrate Fractions of Ruminant Feeds Using Automated Gas Production Technique

  • Seo, S.;Lee, Sang C.;Lee, S.Y.;Seo, J.G.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.356-364
    • /
    • 2009
  • The current ruminant feeding models require parameterization of the digestion kinetics of carbohydrate fractions in feed ingredients to estimate the supply of nutrients from a ration. Using an automated gas production technique, statistically welldefined digestion rate of carbohydrate, including soluble carbohydrate, can be estimated in a relatively easy way. In this study, the gas production during in vitro fermentation was measured and recorded by an automated gas production system to investigate degradation kinetics of carbohydrate fractions of a wide range of ruminant feeds: corn silage, rice straw, corn, soybean hull, soybean meal, and cell mass from lysine production (CMLP). The gas production from un-fractionated, ethanol insoluble residue and neutral detergent insoluble residue of the feed samples were obtained. The gas profiles of carbohydrate fractions on the basis of the carbohydrate scheme of the Cornell Net Carbohydrate and Protein System (A, B1, B2, B3 and C) were generated using a subtraction approach. After the gas profiles were plotted with time, a curve was fitted with a single-pool exponential equation with a discrete lag to obtain kinetic parameters that can be used as inputs for modern nutritional models. The fractional degradation rate constants (Kd) of corn silage were 11.6, 25.7, 14.8 and 0.8%/h for un-fractioned, A, B1 and B2 fractions, respectively. The values were statistically well estimated, assessed by high t-value (>12.9). The Kd of carbohydrate fractions in rice straw were 4.8, 21.1, 5.7 and 0.5%/h for un-fractioned, A, B1 and B2 fractions, respectively. Although the Kd of B2 fraction was poorly defined with a t-value of 4.4, the Kd of the other fractions showed tvalues higher than 21.9. The un-fractioned corn showed the highest Kd (18.2%/h) among the feeds tested, and the Kd of A plus B1 fraction was 18.7%/h. Soybean hull had a Kd of 6.0, 29.0, 3.8 and 13.8%/h for un-fractioned, A, B1 and B2, respectively. The large Kd of fraction B2 indicated that NDF in soybean hull was easily degradable. The t-values were higher than 20 except for the B1 fraction (5.7). The estimated Kd of soybean meal was 9.6, 24.3, 5.0%/h for un-fractioned, A and B1 fractions, respectively. A small amount of gas (5.6 ml at 48 ho of incubation) was produced from fermentation of CMLP which contained little carbohydrate. In summary, the automated gas production system was satisfactory for the estimation of well defined (t-value >12) kinetic parameters and Kd of soluble carbohydrate fractions of various feedstuffs that supply mainly carbohydrate. The subtraction approach, however, should be applied with caution for some concentrates, especially those which contain a high level of crude protein since nitrogen-containing compounds can interfere with gas production.

Effect of Dietary Fish Meal Replacement by a Blend of Plant and Animal Ingredients on the Growth and Blood Chemistry of Starry Flounder Platichthys stellatus (동·식물성 혼합물의 사료 내 어분대체가 강도다리(Platichthys stellatus)의 성장 및 혈액성상에 미치는 영향)

  • Shin, Seung-Jun;Lee, Tae-Kyu;Lee, Dong-Hoon;Lim, Seong-Ryul;Yang, Il-Chang;Kim, Sung-Sam;Choi, Jung-Woo;Kim, Jin-Soo;Kim, Jeong-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.2
    • /
    • pp.134-140
    • /
    • 2019
  • A feeding trial was conducted to investigate the effects of dietary fish meal replacement by a blend of lysine cell mass, corn protein concentrate and poultry by-product meal on the growth and blood chemistry of the starry flounder Platichthys stellatus. The fish meal replacer (FMR) was prepared to have the same level of protein as fish meal (FM). With a commercial diet as a positive control, five experimental diets (basal, FM42, FM32, FM22 and FM12) were formulated to contain 52% protein and 10% lipid. The dietary FM levels decreased from 52% (basal) to 42, 32, 22 and 12% with concomitant increase in the FMR to 10, 20, 30, 40 and 50%, respectively. Juvenile starry flounder with an average body weight of 177.3 g were randomly distributed in each (30 fish/tank) of 18 plastic tanks ($139{\times}99{\times}54cm$). After a 45-day feeding trial, the survival rate ranged from 95.6% (FM22) to 100% (control and FM42), while the weight gain of the fish groups varied from 49.7 to 58.4 g. The results clearly revealed that starry flounder can grow well on a diet containing low FM (12%) with a high level of FMR (50%) without any adverse effects.