• Title/Summary/Keyword: Lysimeter Experiment

Search Result 49, Processing Time 0.025 seconds

Soil healthy assesment of organic wastes-treated lysimeter by Basidiomycota (담자균류를 이용한 폐기물연용 밭토양의 건전성 간이평가)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Choi, Sun-Gyu;Kweon, Soon-Ik;Kim, Gyu-Hyun;Kong, Won-Sik;Yoo, Young-Bok;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • Application of sludge wastes into the field may help soil fertility with physical, chemical and biological properties. Efficient use of sludge waste, however, requires an individual assessment of the waste products. A lot of experiment into the organic waste-treated soils has been done for decade. However, studies have not been carried out on the assessment of agricultural soil by Basidiomycota. This study was assessed the influence of sludge application on soil healthy in agricultural upland soils. The organic wastes selected for long-term application experiment in this study were municipal sewage sludge (MSS), industrial sewage sludge (ISS), leather processing sludge (LS), alcohol fermentation processing sludge (FS), and pig manure compost (PMC). To develop the soil healthy assesment method, soil samples were diluted by 20X with distilled water. After shaking at 200rpm for 30 minutes, the shaked sample was mixed on PDA(Potato Dextrose Agar). And sterilized at $121^{\circ}C$ for 20 minutes. Coriolus hirsutus (MKACC 50560) was inoculated on petri-dish including PDA mixed sample. After the media was incubated at $25^{\circ}C$ for five days, the mycelial growth of C. hirsutus was measured. When the mycelial growth on sample media was compared with growth on media contained PDA only, well grown media contained sample soil was assesed as healthy soil. The results suggest that the simple method by Coriolus hirsutus is a handy way to assess the healthy of waste sludge-applied upland soils.

  • PDF

Salt Movement of Soils by Runoff in Green House Area (시설재배지 토양의 유거수에 의한 염류의 이동)

  • Kang, Bo-Koo;Kim, Hyun-Ju;Lee, Kyung-Ja;Kim, Jai-Joung;Hong, Soon-Dal
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.112-115
    • /
    • 2001
  • Salt accumulation and movement by runoff ware studied in runoff resevior lysimeter constructed in a green house located in the area of Cheongju, Chungbuk province. Average runoff ratio of rainfall within period of this experiment was 58%. The average content of cations lost from field soil by runoff was in the order of $Ca^{2+}(27.12\;mg/L\;)$ > $K^+(9.18\;mg/L)$ > $Mg^{2+}(2.53\;mg/L)$ > $Na^+(1.89\;mg/L)$ and in the care anions $SO_4\;^{2-}(63.38\;mg\;/L)$ > $NO_3\;^-(25.40\;mg/L)$ > $Cl^-(4.19\;mg/L)$ > $PO_4\;^{3-}(3.18\;mg/L)$. Amounts of salt movement by runoff $SO_4\;^{2-}(140.2\;kg/ha)$, $Ca^{2+}(59.9\;kg/ha)$, $NO_3\;^-(56.1\;kg/ha)$, $K^+(20.3\;kg/ha)$, $Cl^-(9.3\;kg/ha)$, $PO_4\;^{3-}(7.0\;kg/ha)$, $Mg^{2+}(5.6\;kg/ha)$ and $Na^+(4.2\;kg/ha)$. The loss amount of $PO_4\;^{3-}$ was the lowest among the anions investigated in this experiment. $P_2O_5$ was accumulated on the soil surface due to strong affinity for the sorption site on the soil particle surface.

  • PDF

Mobility of Nitrate and Phosphate through Small Lysimeter with Three Physico-chemically Different Soils (소형 라이시메터시험을 통한 토양특성에 따른 질산과 인산의 이동성 비교)

  • Han, Kyung-Hwa;Ro, Hee-Myong;Cho, Hyun-Jun;Kim, Lee-Yul;Hwang, Seon-Woong;Cho, Hee-Rae;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.260-266
    • /
    • 2008
  • Small lysimeter experiment under rain shelter plastic film house was conducted to investigate the effect of soil characteristics on the leaching and soil solution concentration of nitrate and phosphate. Three soils were obtained from different agricultural sites of Korea: Soil A (mesic family of Typic Dystrudepts), Soil B (mixed, mesic family of Typic Udifluvents), and Soil C (artificially disturbed soils under greenhouse). Organic-C contents were in the order of Soil C ($32.4g\;kg^{-1}$) > Soil B ($15.0g\;kg^{-1}$) > Soil A ($8.1g\;kg^{-1}$). Inorganic-N concentration also differed significantly among soils, decreasing in the order of Soil B > Soil C > Soil A. Degree of P saturation (DPS) of Soil C was 178%, about three and fifteen times of Soil B (38%) and Soil A (6%). Prior to treatment, soils in lysimeters (dia. 300 mm, soil length 450 mm) were tabilized by repeated drying and wetting procedures for two weeks. After urea at $150kg\;N\;ha^{-1}$ and $KH_2PO_4$ at $100kg\;P_2O_5\;ha^{-1}$ were applied on the surface of each soil, total volume of irrigation was 213 mm at seven occasions for 65 days. At 13, 25, 35, 37, and 65 days after treatment, soil solution was sampled using rhizosampler at 10, 20, and 30 cm depth and leachate was sampled by free drain out of lysimeter. The volume of leachate was the highest in Soil C, and followed by the order of Soils A and B, whereas the amount of leached nitrate had a reverse trend, i.e. Soil B > Soil A > Soil C. Soil A and B had a significant increase of the nitrate concentration of soil solution at depth of 10 cm after urea-N treatment, but Soil C did not. High nitrate mobility of Soil B, compared to other soils, is presumably due to relatively high clay content, which could induce high extraction of nitrate of soil matrix by anion exclusion effect and slow rate of water flow. Contrary to Soil B, high organic matter content of Soil C could be responsible for its low mobility of nitrate, inducing preferential flow by water-repellency and rapid immobilization of nitrate by a microbial community. Leached phosphate was detected in Soil C only, and continuously increased with increasing amount of leachate. The phosphate concentration of soil solution in Soil B was much lower than in Soil C, and Soil A was below detection limit ($0.01mg\;L^{-1}$), overall similar to the order of degree of P saturation of soils. Phosphate mobility, therefore, could be largely influenced by degree of P saturation of soils but connect with apparent leaching loss only more than any threshold of P accumulation.

Water Saving Irrigation Standard of Tomato in Greenhouse

  • Eom, Ki-Cheol;Lee, Byung-Kook;Koh, Mun-Hwan;Eom, Ho-Yong;Sonn, Yeun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.313-321
    • /
    • 2013
  • The Average daily PET (Potential evapotranspiration), evaluated based on the last 30 years meteorological data and the lysimeter experiment carried out by RDA during 11 years, of 9 regions in Korea for the tomato cultivated in greenhouse, was $3.41mm\;day^{-1}$. Two kinds of water saving irrigation standard (WSIS), deficit irrigation standard (DIS) and partial root-zone drying irrigation standard (PRDIS) that include the irrigation interval and the amount of irrigation water according to the region, soil texture and growing stage, were established. According to the DIS and PRDIS, the cultivator can save water up to 29.2% and 53.7%, respectively, for tomato cultivation in greenhouse compared to the full irrigation standard (FIS) which established in 1999. WSIS can be used easily by the cultivator without complicate procedures such as soil sampling and measurement of soil water status by expensive sensors. But the cultivator should care about irrigation method such as PRDI (partial root-zone drying irrigation) without yield decrease.

Effect of Tillage and Seeding Methods on Percolation and Irrigation Requirement in Rice Paddy Condition

  • Chae, Je-Cheon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.264-268
    • /
    • 1998
  • The experiment was conducted to clarify irrigation requirement and percolation rate in rice paddy. The four rice cultural system of no-tin, till, transplanting, and direct seeding condition were treated in the lysimeter filled with sandy loam soil. The amounts of irrigation and soil percolation were measured daily, and irrigation requirement was estimated. The daily percolation was 19.5 l/$\textrm{m}^2$ in no-till direct seeding on flooded paddy surface, 17.4 l/$\textrm{m}^2$ in both of till-direct seeding on flooded surface and no-till transplanting, and 15.2 l/$\textrm{m}^2$ in transplanting plot. This is equivalent to 19.5, 17.4, and 15.2 mm per day, respectively. Highest irrigation requirement was 3,770 l/$\textrm{m}^2$ in no-till direct seeding plots. Others were 3,249, 2,577, and 2,321 l/$\textrm{m}^2$ in till-direct seeding, no-till transplanting and transplanting plot, respectively. The estimated irrigation requirement of no-till transplanting, till-direct seeding and no-till direct seeding was increased by 11, 37, and 59% compared to till-transplanting plot. Percolation rate of no-till transplanting, till direct seeding and no-till direct seeding was increased by 12%, 40%, and 66%, respectively compared to the till-transplanting plot. The percolation rate in paddy soil was increased greatly after reproductive stage of rice.

  • PDF

Variation of Crop Coefficient With Respect to the Reference Crop Evapotranspiration Estimation Methods in Ponded Direct Seeding Paddy Rice (담수직파재배 논벼의 기준작물 잠재증발산량 산정방법별 작물계수의 변화)

  • 정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.114-121
    • /
    • 1997
  • In order to provide basic information for the estimation of evapotranspiration in the ponded direct seeding paddy field, both field lysimeter experiment and model prediction were performed to estimate daily ET. Various methods were used to predict daily reference crop ET and crop coefficients. Measure4 mean daily ET during the 1995 growing season varied from 5.9 to 6.1 mm depending on the species, while it varied from 5.1 to 5.5 mm in 1996. Model predicted mean daily ET during the 1995 growing season varied from 3.9 to 4.9 mm depending on the prediction model, while it varied from 3.5 to 4.7 mm in 1996. The smaller ET values both measured and predicted in 1996 were caused by the low values of temperature, sunshine hours, and solar radiation. Crop coefficients varied from 1.20 to 1.50 in 1995 depending on the prediction model, while it varied from 1.10 to 1.47 in 1996. Comparison of the seven reference crop ET prediction methods used in this study shows that the Penman-Monteith method and the FAO-Radiation method gave the lowest ET while the corrected Penman method and the Hargreaves method gave the largest ET. Since crop coefficients vary to a large extent based on the prediction methods, reference crop ET prediction method should be carefully selected in irrigation planning.

  • PDF

Leaching Characteristics of the Endocrine Disruptor-suspected Pesticides in Upland Soil (내분비계장애추정농약의 밭토양 중 용탈 특성)

  • Noh, Hyun Ho;Lee, Jae Yun;Lee, Kwang Hun;Park, Hyo Kyoung;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.168-177
    • /
    • 2013
  • This experiment was carried out to estimate leaching potential of thirteen endocrine disruptor-suspected pesticides in upland soils using soil columns (5 cm I.D. ${\times}$ 35 cm H.) packed with soil A (sandy loam) and soil B (loam). When 12.6 mL of water, average precipitation in Cheongju area during the period from June to August, 2001-2010, was percolated through soil column packed with soil A every day for 21 days, no pesticides were detected from leachate, with the exception of metribuzin which was detected with negligible. Also, when 2 L of water was percolated consecutively five times through soil columns packed with soil A and B, irrespective of soil types, cypermethrin, endosulfan, fenvalerate, parathion and trifluralin, which were very low water solubilities and high soil $K_{oc}s$, were not detected from leachate and were distributed mostly in the depth of 0-5 cm, representing that water solubility and soil $K_{oc}$ are major contributing factors to their leaching behavior. Despite high average leaching rates in carbaryl and methomyl, actual possibilities of ground water contamination in the agricultural environment by them would be very low, considering that the negligible amount of pesticide was percolated through a lysimeter with an undisturbed soil core simulating the field conditions, while most of pesticide was percolated through a soil column with the disturbed soil profile.

Agronomic Effect of High Quality Compost mixed with Brown Seaweed for Environmentally Benign Organic Farming (해초 혼합 기능성 희비의 작물재배 효과)

  • 손상목
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.2
    • /
    • pp.95-109
    • /
    • 2002
  • This study focussed to find out the agronomic effect of high quality compost mixed with brown seaweed and to determine the optimum mixing rate of seaweed to compost for environmentally benign organic farming. The experiment was conducted in lysimeters at Experimental Farm of Dankook University with Chinese Cabbage(Bulam #1), and the crop growth such length and width of leaf, biomass of Chinese Cabbage were checked, the content of chlorophyll, sugar, vitamin C, nitrate in outer leaf and idler leaf was determined. It was observed that nitrate content was dramatically decreased in the plot of mixture with seaweed, while biomass and content of Vitamin C were increased steeply in the plot of mixture with seaweed. The best result was gained the 0.25% mixture of brown seaweed with compost.

  • PDF

Effect of the Landscape Crop, Chrysanthemum zawadskii on Reducing Soil Loss in Highland Sloping Area (경관작물 구절초의 고랭지 경사지 밭 토양유실 경감 효과)

  • Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Kim, Tae Young;Lee, Jung Tae;Nam, Jung Hwan;Chang, Dong Chil;Suh, Jong Taek;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • There is high vulnerability of soil loss in sloping and highland used for agricultural production due to the low surface covering in summer rainy season. This study evaluated the surface-covering rate of landscape crop in reducing soil loss in the highland. The experiment was conducted in a 55% sloped lysimeter with three treatments of planting density using Korean native chrysanthemum, and investigated the soil coverage rate, run-off water, and soil erosion. The three treatments according to the degree of soil covering are bare soil as the control treatment TC, coverage rate of 43-59% for treatment T1, and, coverage rate of 63-81% for treatment T1, and T2. During the cultivation period, the average reduction of run-off water was 71% for treatment T1 and 76% for treatment T2, which are better, compared with the control. The reduction in eroded soil was 84% in treatment T1 and 98% for treatment T2, which is also better than the control treatment. Therefore, it is possible to alleviate the soil loss in sloping lands by planting chrysanthemum, which is superior among the perennial plant species and considered as a crop with economic value.

Characteristics of Water Distribution and Transport Depending on Soil Evolution in the Different Forest Stands (상이(相異)한 임분(林分)의 토층분화(土層分化)에 따른 수분분포(水分分布)와 이동특성(移動特性))

  • Jin, Hyun-O;Chung, Doug-Young;Son, Yowhan;Joo, Yeong-Teuk;Oh, Jong-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.24-32
    • /
    • 2000
  • We investigated the patterns of soil horizon evolution and its water distribution on three different forest stands covered with Larix leptolepis, Pinus koraiensis, and Qercus mongolica on the Experimental Forest of Kyunghee University, located in Kwangju, Kyunggi-Do. Compared to the properties of depths of O and A horizons evolved on the Pinus koraiensis stand, the depths of O and A horizons on the forest stands of Larix leptolepis and Qercus mongolica were shallower, indicating that the soil horizon were deeply influenced by geographical characteristics, its erosive and sedimentary distinction, vegetation cover and its population density. And the bulk densities of the sites selected were lower in the high slope gradient than that in the lower slope gradient at the same depth of soil profile. Therefore, the changes of the soil bulk densities were closely related to the soil organic matter and the vertical transport of soil particle throughout soil depths. On the other hand, the bulk density and organic matter content in soil can influence the water transport phenomena, resulting in decrease of the hydraulic conductivity as the increase in the bulk density, while the organic matter can not affect the hydraulic conductivity on the soil surface layer. For a rainfall infiltration characteristics from a lysimeter experiment established on the stand of Larix leptolepis, the bulk density and slope gradient strongly influenced the vertical transport of water, as well as the lateral movement of rainfall. Conclusively, the characteristics of water movement and distribution in the forest stand can be determined not by the geographical factor such as slope gradient but also by the bulk density and organic matter content remained in soils.

  • PDF