• Title/Summary/Keyword: Lysimeter

Search Result 182, Processing Time 0.142 seconds

Characteristics of Stabilization of Excavated Solid Wastes by Aerobic and Anaerobic Landfilling (호기 및 혐기매립에 의한 굴착폐기물의 안정화 특성 연구)

  • Park, Jin-Kyu;Oh, Dong Ik;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.3
    • /
    • pp.76-85
    • /
    • 2004
  • Anaerobic decomposition of municipal solid waste (MSW) had potential adverse impacts such as the production of methane and long-term post closure on human health and the environment. It was demonstrated that aerobic degradation of MSW resulted in the reduction of a methane yield and the enhancement of stabilization of MSW. Excavated solid wastes were both aerobically and anaerobically treated in order to evaluate the effects of air injection on the stabilization of landfill site. The municipal solid waste (MSW) samples were excavated from a 10-year old landfill (operation period: 1991. 11~1994. 11), Jeonju, Korea. Excavated municipal solid wastes are primarily composed of soils and vinyl/plastics. For the two aerobic simulated lysimeters, the levels of $O_2$ ranged 1.6~23.1% and the levels of $CO_2$ ranged 1.5~15.1%, which confirmed the aerobic decomposition. Aeration did prevent methane formation. For the anaerobic simulated lysimeter, the $CO_2$ rose as $O_2$ was consumed and low levels of CH4 were produced. The pH levels ranged from 7.7 to 8.9 for anaerobic lysimeter and from 7.3 to 8.5 for aerobic lysimeters. As expected, aerobic treatment proved to enhance the removal of biodegradable materials in the excavated solid wastes when monitoring the concentration of BOD, COD, $NH_4-N$, and $NO_3-N$ in the leachate.

  • PDF

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

Change of Ion Concentrations in Soil Solution According to Different Cutting Intensities and Sampling Times in Pinus rigida Plantations (리기다소나무조림지(造林地)의 벌채수준(伐採水準) 및 시료(試料) 채취시기(採取時期)에 따른 토양수내(土壤水內) 이온농도(濃度) 변화(變化))

  • Oh, Kwang-In;Cho, Hi-Doo;An, Ki-Wan;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.438-445
    • /
    • 1999
  • The concentrations of some ions ($NO{_3}^-$, $Ca^{2+}$, $Mg^{2+}$, $NH{_4}^+$) in soil solution collected by zero tension lysimeter in mature Pinus rigida plantations in Goksung, Jeonranam-do were measured at two soil depths (10cm and 30cm) following various levels of cutting intensity treatment (uncut, $6m{\times}50m$, $10m{\times}50m$, $20m{\times}50m$ strip crearcutting) three times (July 6. July 30, and August 4) between June 20 and August 4 1998. The ion concentrations in the soil solution were significantly different among sampling times, while the concentrations were not different among cutting levels or sampling depths. The ion concentrations in the soil solution decreased in the order of $NO{_3}^-$ > $Ca^{2+}$ > $Mg^{2+}$ > $NH{_4}^+$ and the mean concentration was 3.60mg/L for $NO{_3}^-$, 1.7mg/L for $Ca^{2+}$, 0.5mg/L for $Mg^{2+}$, and 0.04mg/L for $NH{_4}^+$ respectively. These ion concentrations except for $NH{_4}^+$ ion were negatively correlated with the volume of collected soil solutions (r=-0.31~-0.41). The results suggest that the change of nutrient concentrations in the soil solution collected from the P. rigida plantations was related to the temporal input patterns of precipitation rather than the cutting intensity.

  • PDF

Study on the Evapotranspiration of Crisphead Lettuce by the Weighing Lysimeter (Weighing Lysimeter에 의한 결구상치의 증발산량 조사연구)

  • 김시원;김선주;노희수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.4
    • /
    • pp.41-48
    • /
    • 1986
  • This study was fulfilled by the weighing lysimeter method at the experimental farm of KonKuk University from April to June of 1986 to investgate the amount of evapotranspiration ( ET-lettuec )by the growing periods, evapotranspiration ratio, amount of watering per one time, days of intermission and soil moisture extraction pattern of the crisphead lettuce cultivated in the clay loam soil by different watering points of pFl.7, pF2.O, pF2.7. The results obtained are summar ized as follows : 1.The total evapotranspiration(ETlettuce) of the pFl.7 treatment plot was 358,9mm., 314.9mm in the pF2.O plot and 281.8mm in the pF2.7 plot, therefore the total ETlettuec increased with the difference of 33mm-44mm by the decrease of watering point. 2.The daily maximum ETlettuce by the watering points was 7.66mm, 6:54mm, 5.98mm, respectively in the last ten days of May, and the mean daily ETlettuce during the growing season by the watering points of pFl.7, pF2.O and pF2.7 was 5.44mm(384.5g), 4.77mm(337.2g) and 4.27mm(301.8g), respectively. 3.The evapotranspiration ratio showed maximum value in the middle of May which was the beginning of mid-season stage, and the mean evapotranspiration ratio during the total growing period was 1A7, 1.29, 1.15 by the watering points. 4.The days of watering intermission by the watering points of pFl.7, pF2.O and pF2.7 was 1.0day, 2.9days and 12.Sdays, respectively. 5.The yield of the crisphead lettuce by the watering treatments showed very high significance, and the pF2.O was confirmed as a optimum watering point. 6.The soil moisture extraction pattern(SMEP) of the pF2.0 treatment plot in the initial stage was 85.6% in the 1st and 2nd soil layer and 14.4% in the 3rd and 4th layer, and in the midseason stage, the moisture extraction proportion of the under layer accounted for 34.7%which showed that the root elongated to the lowest soil layer, and there was no difference of the SMEP between the mid-season and late-season stage. 7.The correlation coefficient between the ETlettuce and yield of lettuce by the three watering points was.739, which showed the significance of 5%.

  • PDF

Influence of Grass Cover on Water Use and Shoot Growth of Young 'Fuji'/M.26 Apple Trees at Three Soil Water Regimes in Double Pot Lysimeters (토양수분영역을 달리한 double pot-lysimeter에서 자라는 '후지'/M.26 사과나무의 수분이용과 신초 생장에 미치는 잔디피복의 영향)

  • Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.357-364
    • /
    • 1999
  • This study measures the influence of grass cover on water use and shoot growth of apple trees growing under different soil water regimes in temperate climate conditions and evaluates monthly crop coefficients of such conditions during four months of the growing season in 1995. To do so, double pot lysimeter experiments of 3-year-old Fuji' apple (Males domestica Borkh.) trees under a transparent rain shield were designed and installed. Trees were triplicate under three soil water regimes: (A) drip-irrigation at -50 kPa of soil matric potential (IR50). (B) drip-irrigation at -80 kPa of soil matric potential (IR80), and (C) constant shallow water table at 0.45 m below the soil surface (WT45). In each treatment, two soil surface conditions were tested: the soil surface bare, and covered with turf grasses. Mean monthly water use increased with increasing soil matric potential for drip irrigation and was greatest in the WT45 treatment. Monthly crop coefficients increased linearly in time for drip-irrigated apple trees ($r^2$ values of $0.953^{***}$ for turf grass-covered system and of $0.862^{***}$ for bare surface system), while those obtained in the WT45 treatment fluctuated, Duncan's multiple range tests for shoot growth showed that grass-covered IR50 was most favorable to apple trees. while bare surface waterlogged situation was most adverse at least in part due to a lack of oxygen in the root zone. Mid-season leaf Kjeldahl-N was higher in drip-irrigated apple trees than in WT45 trees, while soil Kjeldahl-N was not different irrespective of treatments.

  • PDF

Characteristics of Soil Water Runoff and Canopy Cover Subfactor in Sloped Land with Different Soil Texture (경사지 밭토양에서 강우량과 토성에 따른 물 유출 양상 및 수관피복인자 구명)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Park, Chan-Won;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • This study was performed as an effort to reduce soil loss by investigating the phase of water flow according to soil texture and rainfall pattern and by determining the canopy cover subfactor in the RUSLE (revised universal soil loss equation). Red pepper was planted at the 15% sloped lysimeter of $2m{\times}5m{\times}0.5m$ ($width{\times}length{\times}depth$) with three different textured soils (loam, clay loam and sandy loam) and the relationship between amount and intensity of rainfall; soil loss and the amount of runoff; and amount of rainfall and runoff at different soil texture were measured at the experiment station of the National Institute of Agricultural Science and Technology (NIAST) during May to October of 2005. The amount of runoff increased with increasing amount of rainfall, showing difference in the relative increase rate of runoff at different soil texture. The increase rate of runoff with unit increase of rainfall for the lysimeter with red pepper was 0.44, 0.41 and 0.13 for loam, clayey loam and sandy loam, respectively. The minimum amount of rainfall for runoff was 23.53 mm for sandy loam, 10.35 mm for loam and 5.46 mm for clayey loam, respectively. The canopy cover subfactors of red pepper were 0.425, 0.459, and 0.478 for sandy loam, loam and clayey loam, respectively.

Effect of Soil Texture on Rice Growth and Paddy Soil Percolation under Lysimeter Condition (라이시미터 조건에서 토성이 벼의 생육 및 논토양의 지하삼투수량에 미치는 영향)

  • Chae, Je-Cheon;Kim, Sung-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.236-240
    • /
    • 2001
  • The lysimeter experiment was conducted to investigate the temporal changes of irrigation requirement, soil water percolation and rice root distribution during rice growing period under different soil texture that were sandy loam, clay loam and clay paddy soil in 1999 and 2000. The irrigation requirement in the first year was 3,306 l/$m^2$ in clay loam, 2,650 l/$m^2$ in sandy loam and 2,002 l/$m^2$ in clay soil. However, the highest irrigation requirement was 5,281 l/$m^2$ in sandy loam and the next was 4,984 l/$m^2$ in clay loam and 3,968 l/$m^2$ in clay soil in the second year, Soil water percolation in the first year was 2,141 l/$m^2$ in clay loam, 1,228 l/$m^2$ in Sandy loam and 862 l/$m^2$ in clay soil. However, in the second year, the highest water percolation of 4,448 l/$m^2$ was measured in sandy loam, and was followed by 3,833 l/$m^2$ in clay loam and 2,925 l/$m^2$ in clay soil. Distribution ratio of rice roots measured in 0-10cm of soil depth was 56.0% in sandy loam, 61.4% in clay loam and 72.1% in clay soil, respectively. It was interpreted that the greater water percolation measured in the second year was caused mainly by the large amount of rice root growth. Therefore, it was concluded that the soil water percolation in rice paddy soil was affected greatly not only by soil texture but also the growth of rice root.

  • PDF

유역 물수지조사를 위한 수문기상학적인 기초자료분석

  • 이광호
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.44-48
    • /
    • 1972
  • This article includes hydrometeorological analysis of evapotranspiration and precipitation, which are used available basic data for a certain basin water budget. Evapotranspiration on water surface, bare soil and rice fields is directly measured by Thornthwaite's type Lysimeter and on water surface and vegetables computed using the Penman's equation. Areal precipitation is analized through the Thiessen method and arithmatic mean method. It is interested fact that the correlation coefficient for Class A Pan's evaporation vs. the actual evapotranspiration is the highest value among the coefficients for different type evaporimeter and Penman equation, and evaporation ratio on rice field's evapotranspiration vs. Class A Pan's evaporation is 1. 5-2. 3.

  • PDF

Estimating evapotranspiration using leaf temperatured (엽온도 측정을 통한 증발산량 산정(관개배수 \circled1))

  • 이훈선;이남호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.151-156
    • /
    • 2000
  • This study was to evaluate the effect of leaf temperature on daily evapotranspiration of crop. A transpiring crop will be cooled by the vaporization of water to a temperature below that of the surrounding air. Leaf temperature was measured a infrared thermometer. Crop evapotranspiration was measured by the method of lysimeter. A statistical model for estimating evapotranspiration was developed and tested. It was showed that the model was applicable.

  • PDF

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method (인공위성 데이터 기반의 공간 증발산 산정 및 에디 공분산 기법에 의한 플럭스 타워 자료 검증)

  • Sur, Chan-Yang;Han, Seung-Jae;Lee, Jung-Hoon;Choi, Min-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.435-448
    • /
    • 2012
  • Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a sensitive hydrological factor with outer circumstances. Though both direct measurements with an evaporation pan and a lysimeter, and empirical methods using eddy covariance technique and the Bowen ratio have been widely used to observe ET accurately, they have a limitation that the observation can stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral sensor mounted on Terra satellite. We improved to evapotranspiration model based on remote sensing (Mu et al., 2007) and estimated Penman-Monteith evapotranspiration considering regional characteristics of Korea that was using only MODIS product. We validated evapotranspiration of Sulma (SMK)/Cheongmi (CFK) flux tower observation and calculation. The results showed high correlation coefficient as 0.69 and 0.74.