• 제목/요약/키워드: Lyapunov stability theorem

검색결과 129건 처리시간 0.022초

적응 퍼지 슬라이딩 모드 제어기설계를 위한 새로운 해석 (An Analysis of Adaptive Fuzzy Sliding Mode Controller of Nonlinear System)

  • 공형식;황은주;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.161-163
    • /
    • 2005
  • This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems are used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system. we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem. and convergence and robustness properties are demonstrated. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

  • PDF

컨테이너 크레인의 되먹임 선형화제어 (Feedback Linearization Control of Container Cranes)

  • 박한;좌동경;홍금식
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.58-64
    • /
    • 2005
  • In this paper, a feedback linearizing anti-sway control law, using a 2-D model for container cranes, is investigated. The equations of motion are first derived from Lagrange's equation. Then, by substituting the sway dynamics into the trolley dynamics, a reduction of variables from three (trolley, hoist, sway) to two (trolley, hoist) is pursued. The anti-sway control law is designed based on the Lyapunov stability theorem. The proposed control law guarantees the uniform asymptotic stability of the closed-loop system. The simulation results of the derived control law, using MATLAB/Simulink, are compared with those of the sliding mode control law, noted in previous literature. Also, experimental results using a 3-D pilot crane are provided.

새로운 추정 알고리즘을 이용한 비최소 위상 시스템의 직접 적응 제어 (Direct Adaptive Control of Nonminimum Phase Systems Using Novel Estimation Algorithm)

  • 이선우;김종환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.377-380
    • /
    • 1992
  • This paper proposes a novel direct adaptive pole placement control algorithm which can be applied to continuous time nonminimum phase systems. The algorithm is based on Lyapunov's direct method. By introducing an auxiliary signal, a minimal error model is constructed in state space. Using the error model an estimation law is obtained via Lyapunov's second stability theorem. The global stability of the overall system is established.

  • PDF

선형/비선형 슬라이딩 패치 및 스턱현상과 그 응용 (Linear/Nonlinear Sliding Patch and Stuck Phenomena and Applications of Linear/Nonlinear Sliding Patch and Stuck)

  • 김진환;함운철
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.523-528
    • /
    • 2000
  • In this short note the characteristics of a nonlinear system of which the state trajectories are oscillating in the phase plane are overviewed. The physical concept of stuck and sliding patch phenomena are also introduced by adding some switching functions and their stability on the sliding patches are analyzed by using the Lyapunov stability theory and Frobenius theorem.

  • PDF

자기 회귀 웨이블릿 신경망을 이용한 비선형 시스템의 터미널 슬라이딩 모드 제어 (Terminal Sliding Mode Control of Nonlinear Systems Using Self-Recurrent Wavelet Neural Network)

  • 이신호;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1033-1039
    • /
    • 2007
  • In this paper, we design a terminal sliding mode controller based on self-recurrent wavelet neural network (SRWNN) for the second-order nonlinear systems with model uncertainties. The terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time in comparison with the classical sliding mode control (CSMC) method. In addition, the TSMC method has advantages such as the improved performance, robustness, reliability and precision. We employ the SRWNN to approximate model uncertainties. The weights of SRWNN are trained by adaptation laws induced from Lyapunov stability theorem. Finally, we carry out simulations for Duffing system and the wing rock phenomena to illustrate the effectiveness of the proposed control scheme.

기동오차 개념을 이용한 임의형상 비행궤적 추종을 위한 유도법칙에 관한 연구 (Expected Miss Distance Concept and Its Applications to Aircraft Guidance Law for Arbitrary Flight Trajectory Tracking)

  • 민병문;노태수
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.478-488
    • /
    • 2003
  • A guidance scheme that is suitable for controlling the aircraft flight path is proposed. The concept of miss distance which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the aircraft's trajectory-tracking guidance law. Guidance commands are given in terms of speed and flight path angles, but they perfectly reflect any position and velocity errors between real aircraft trajectory and reference one. The proposed guidance law is easily integrated into the existing flight control system. The new guidance law was extensively tested with various mission scenarios and the fully nonlinear 6-DOF aircraft model. Furthermore, the new guidance law was compared with previous guidance schemes in nonlinear simulation. Results from the numerical simulation show that the proposed guidance law yields better performance than previous ones.

불확실성을 갖는 비선형 시스템의 자기 회귀 웨이블릿 신경망 기반 터미널 슬라이딩 모드 제어 (Self-Recurrent Wavelet Neural Network Based Terminal Sliding Mode Control of Nonlinear Systems with Uncertainties)

  • 이신호;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.315-317
    • /
    • 2006
  • In this paper, we design a terminal sliding mode controller based on neural network for nonlinear systems with uncertainties. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time. Also, TSMC has the advantages such as improved performance, robustness, reliability and precision by contrast with classical sliding mode control. For the control of nonlinear system with uncertainties, we employ the self-recurrent wavelet neural network(SRWNN) which is used for the prediction of uncertainties. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out simulations to illustrate the effectiveness of the proposed control.

  • PDF

A V-Shaped Lyapunov Function Approach to Model-Based Control of Flexible-Joint Robots

  • Lee, Ho-Hoon;Park, Seung-Gap
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1225-1231
    • /
    • 2000
  • This paper proposes a V-shaped Lyapunov function approach for the model-based control of flexible-joint robots, in which a new model-based nonlinear control scheme is designed based on a V-shaped Lyapunov function. The proposed control guarantees global asymptotic stability for link trajectory control while keeping all internal signals bounded. Since joint flexibility is used as a control parameter, the proposed control is not restricted by the degree of joint flexibility and be applied to flexibility-joint, partly-flexibility, or rigid-joint robots without modification. the effectiveness of the proposed control has been by computer simulation.

  • PDF

패러미터와 잡음전력이 불확실한 시스템에 대한 LQG 제어기 설계 (LQG design under plant perturbation and uncertain noise covariance)

  • 오원근;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.203-207
    • /
    • 1991
  • In this paper, a linear stocastic dynamic system with norm - bounded plant perpurbations and norm - bounded noise covariarice is studied. Instead of Bellman-Gronwall inequality used in previous study, Lyapunov stability theorem is used to derive stability condition. The new condition is of more compact form than the previous result.

  • PDF

시간지연을 갖는 불확정성 선형 시스템의 강인 안정성에 관한 연구 (A Study on Robust Stability of Uncertain Linear Systems with Time-delay)

  • 이희송;마삼선;유정웅;김진훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.615-621
    • /
    • 1999
  • In this paper, we consider the robust stability of uncertain linear systems with time-delay in the time domain. The considered uncertainties are both the unstructured uncertainty which is only Known its norm bound and the structured uncertainty which is known its structured. Based on Lyapunov stability theorem and{{{{ { H}_{$\infty$ } }}}} theory known as Strictly Bounded Real Lemma (SBRL), we present new conditions that guarantee the robust stability of system. Also, we extend this to multiple time-varying delays systems and large-scale systems, respectively. Finally, we show the usefulness of our results by numerical examples.

  • PDF