• Title/Summary/Keyword: Lyapunov stability Analysis

Search Result 235, Processing Time 0.036 seconds

Design of Sliding Mode Controller Based on Adaptive Fault Diagnosis Observer for Nonlinear Continuous-Time Systems (비선형 연속 시간 시스템을 위한 적응 고장 진단 관측기 기반 슬라이딩 모드 제어기 설계)

  • Chang, Seung Jin;Choi, Yoon Ho;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.822-826
    • /
    • 2013
  • In this paper, we propose an AFDO (Adaptive Fault Diagnosis Observer) and a fault tolerant controller for a class of nonlinear continuous-time system under the nonlinear abrupt actuator faults. Together with its estimation laws, the AFDO which estimates that the actuator faults is designed by using the Lyapunov analysis. Then, based on the designed AFDO, an adaptive sliding mode controller is proposed as the fault tolerant controller. Using Lyapunov stability analysis, we also prove the uniform boundedness of the state, the output and the fault estimation errors, and the asymptotic stability of the tracking error under the nonlinear time-varying faults. Finally, we illustrate the effectiveness of the proposed diagnosis method and the control scheme thorough computer simulations.

NOTE OF BEHAVIOR OF A COUPLED NONAUTONOMOUS ORDINARY DIFFERENTIAL EQUATION

  • Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.227-230
    • /
    • 1995
  • Stability of a coupled nonautonomous ordinary differential equation is investigated. Asymptotic convergence to zero of a part of state vector is additionally shown, otherwise only uniform stability could have been concluded by the Lyapunov direct method. Obtained results could be particularly useful in analysis of nonautonomous systems in which the invariance principle does not hold. An illustrating example is given.

  • PDF

GLOBAL EXPONENTIAL STABILITY OF BAM NEURAL NETWORKS WITH IMPULSES AND DISTRIBUTED DELAYS

  • Shao, Yuanfu;Luo, Zhenguo
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.103-117
    • /
    • 2011
  • By using an important lemma, some analysis techniques and Lyapunov functional method, we establish the sufficient conditions of the existence of equilibrium solution of a class of BAM neural network with impulses and distributed delays. Finally, applications and an example are given to illustrate the effectiveness of the main results.

Exponential stability of stochastic static neutral neural networks with varying delays

  • Sun, Xiaoqi
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.237-242
    • /
    • 2022
  • This paper is concerned with exponential stability in mean square for stochastic static neutral neural networks with varying delays. By using Lyapunov functional method and with the help of stochastic analysis technique, the sufficient conditions to guarantee the exponential stability in mean square for the neural networks are obtained and some results of related literature are extended.

Stability Analysis of Induction Motor by Lyapunov Function Construction of Matrix Polynominal Type (행렬다항식 LYAPUNOV함수 구성에 의한 유도전동기의 안전도 해석)

  • 윤병도;우정인;이준탁
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.2 no.4
    • /
    • pp.62-69
    • /
    • 1988
  • 선형 시스템에 대한 Lyapunov 함수의 구성법은 잘 알려져 있으나, 비선형 시스템의 Lyapunov 함수 구성법은 아직 체계화되어 있지 못하다. 따라서, 본 논문에서는, 비선형 시스템의 안전도 해석을 위하여, 종래의 정상상태 부근에서 Taylor 전개에 의한 선형화 기법에 의존하지 않고, 비선형 시스템을 나타내는 상태공간의 활동성 모델로부터, 비선형성을 나타내는 항을 분리하여, 특수행렬변환시킴으로서, 선형 시스템의 Lyapunov 함수 구성법을 살린, 행렬다항식형 Lyapunov 함수를 구성하고, 이를 유도전동기의 안전도 해석에 적용시켰다. 그 결과, 구해진 안정영역은, 선형화에 의한 것보다는 훨씬 넓은 초공간으로 표현되는 유도전동기의 점근안정영역이 되었다.

  • PDF

A Practical Stability Control Strategy for DC/DC Converters

  • Jiang, Lin;Li, Po
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1232-1240
    • /
    • 2018
  • This paper aims at designing an intelligent controller, based on control Lyapunov Function strategy integrated with fabricating discrete model of Buck and Boost converters and analyzing energy changes during the DC/DC progress to realize tracing reference current on Buck and Boost converters. In addition, practical stability phenomenon research and transient performance analysis has been proposed to give an insight to the influence of controller parameters in achieving an enhanced output performance and how the time of sample period affect the error of practical stability will be illustrated. The novelty of this controller in comparison to other schemes lies in the improved performance of practical stability.

GLOBAL STABILITY OF VIRUS DYNAMICS MODEL WITH IMMUNE RESPONSE, CELLULAR INFECTION AND HOLLING TYPE-II

  • ELAIW, A.M.;GHALEB, SH.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.39-63
    • /
    • 2019
  • In this paper, we study the effect of Cytotoxic T Lymphocyte (CTL) and antibody immune responses on the virus dynamics with both virus-to-cell and cell-to-cell transmissions. The infection rate is given by Holling type-II. We first show that the model is biologically acceptable by showing that the solutions of the model are nonnegative and bounded. We find the equilibria of the model and investigate their global stability analysis. We derive five threshold parameters which fully determine the existence and stability of the five equilibria of the model. The global stability of all equilibria of the model is proven using Lyapunov method and applying LaSalle's invariance principle. To support our theoretical results we have performed some numerical simulations for the model. The results show the CTL and antibody immune response can control the disease progression.

Sliding Mode Control of Spacecraft with Actuator Dynamics

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.169-175
    • /
    • 2002
  • A sliding mode control of spacecraft attitude tracking with actuator, especially reaction wheel, is presented. The sliding mode controller is derived based on quaternion parameterization for the kinematic equations of motion. The reaction wheel dynamic equations represented by wheel input voltage are presented. The input voltage to wheel is calculated from the sliding mode controller and reaction wheel dynamics. The global asymptotic stability is shown using a Lyapunov analysis. In addition the robustness analysis is performed for nonlinear system with parameter variations and disturbances. It is shown that the controller ensures control objectives for the spacecraft with reaction wheels.

ANALYSIS OF A NONAUTONOMOUS PREDATOR-PREY MODEL INCORPORATING A PREY REFUGE AND TIME DELAY

  • Samanta, G.P.;Garain, D.N.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.955-967
    • /
    • 2011
  • In this paper we have considered a nonautonomous predator-prey model with discrete time delay due to gestation, in which there are two prey habitats linked by isotropic migration. One prey habitat contains a predator and the other (a refuge) does not. Here, we have established some sufficient conditions on the permanence of the system by using in-equality analytical technique. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. We have observed that the per capita migration rate among two prey habitats and the time delay has no effect on the permanence of the system but it has an effect on the global asymptotic stability of this model. The aim of the analysis of this model is to identify the parameters of interest for further study, with a view to informing and assisting policy-maker in targeting prevention and treatment resources for maximum effectiveness.

GLOBAL ANALYSIS FOR A DELAY-DISTRIBUTED VIRAL INFECTION MODEL WITH ANTIBODIES AND GENERAL NONLINEAR INCIDENCE RATE

  • Elaiw, A.M.;Alshamrani, N.H.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.317-335
    • /
    • 2014
  • In this work, we investigate the global stability analysis of a viral infection model with antibody immune response. The incidence rate is given by a general function of the populations of the uninfected target cells, infected cells and free viruses. The model has been incorporated with two types of intracellular distributed time delays to describe the time required for viral contacting an uninfected cell and releasing new infectious viruses. We have established a set of conditions on the general incidence rate function and determined two threshold parameters $R_0$ (the basic infection reproduction number) and $R_1$ (the antibody immune response activation number) which are sufficient to determine the global dynamics of the model. The global asymptotic stability of the equilibria of the model has been proven by using Lyapunov theory and applying LaSalle's invariance principle.