• 제목/요약/키워드: Lyapunov Function

검색결과 493건 처리시간 0.031초

다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계 (Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots)

  • 박동주;문정환;한성익
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

적응 적분바이너리 관측기를 이용한 원통형 영구자석 동기전동기의 센서리스 속도제어 (A Sensorless Speed Control of Cylindric;31 Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer)

  • 최양광;김영석;한윤석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.152-163
    • /
    • 2004
  • This paper presents a sensorless speed control of cylindrical permanent magnet synchronous motors(PMSM) using an adaptive integral binary observer In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. With the help of integral characteristic, the rotor speed can be finely estimated and utilized for a sensorless speed controller for PMSM. Since the Parameters of the dynamic equations such as machine inertia or a viscosity friction coefficient are lot well known, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that observer may overcome the problem caused by using the dynamic equations and the rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Adaptive Tracking Controller Design for Welding Mobile Manipulator with Unknown Parameters

  • 김상봉
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.8-17
    • /
    • 2009
  • This paper presents an adaptive tracking control method for a welding mobile manipulator with several unknown parameters such as the last length of the manipulator, the wheel radius and the distance from the center to the wheel. The mobile manipulator consisted of the manipulator and the mobile-platform. Kinematic modelings for the manipulator and the mobile-platform with several unknown parameters were produced. The tracking error vectors for the manipulator and the mobile-platform were defined. These adaptive controllers were designed based on the Lyapunov function to guarantee the stability of the whole system when the mobile manipulator performs a welding task. Update laws were also designed to estimate the unknown dimensional parameters. To implement the designed controllers, a control system integrated with PIC16F877 microprocessors and a TMS320C32 DSP was developed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

Position Control for Interior Permanent Magnet Synchronous Motors using an Adaptive Integral Binary Observer

  • Kang, Hyoung-Seok;Kim, Cheon-Kyu;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.240-248
    • /
    • 2009
  • An approach to control the position for an interior permanent magnet synchronous motor (IPMSM) based on an adaptive integral binary observer is described. The binary controller with a binary observer is composed of a main loop regulator and an auxiliary loop regulator. One of its key features is that it alleviates chatter in the constant boundary layer. However, steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer and eliminate the chattering problem of the constant boundary layer, a new binary observer is formed by adding extra integral dynamics to the existing switching hyperplane equation. Also, the proposed adaptive integral binary observer applies an adaptive scheme because the parameters of the dynamic equations such as the machine inertia and the viscosity friction coefficient are not well known. Furthermore, these values can typically be easily changed during normal operation. However, the proposed observer can overcome the problems caused by using the dynamic equations, and the rotor position estimation is constructed by integrating the rotor speed estimated with a Lyapunov function. Experimental results obtained using the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Decentralized Control Design for Welding Mobile Manipulator

  • Phan, Tan-Tung;Chung, Tan-Lam;Ngo, Manh-Dung;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.756-767
    • /
    • 2005
  • This paper presents a decentralized motion control method of welding mobile manipulators which use for welding in many industrial fields. Major requirements of welding robots are accuracy, robust, and reliability so that they can substitute for the welders in hazardous and worse environment. To do this, the manipulator has to take the torch tracking along a welding trajectory with a constant velocity and a constant heading angle, and the mobile-platform has to move to avoid the singularities of the manipulator. In this paper, we develop a kinematic model of the mobile-platform and the manipulator as two separate subsystems. With the idea that the manipulator can avoid the singularities by keeping its initial configuration in the welding process, the redundancy problem of system is solved by introducing the platform mobility to realize this idea. Two controllers for the mobile-platform and the manipulator were designed, respectively, and the relationships between two controllers are the velocities of two subsystems. Control laws are obtained based on the Lyapunov function to ensure the asymptotical stability of the system. The simulation and experimental results show the effectiveness of the proposed controllers.

적응 적분바이너리 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어 (A Sensorless Speed Control of Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer)

  • 강형석;김영석
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.71-80
    • /
    • 2007
  • A control approach for the sensorless speed control of interior permanent magnet synchronous motor(IPMSM) based on adaptive integral the binary is proposed. With a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the width of the constant boundary limits the steady state estimation accuracy and robustness. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral augmented switching the hyperplane equation. By mean of integral characteristics, the rotor speed can be finely estimated and utilized for a sensorless speed controller for IPMSM. The proposed adaptive integral binary observer applies an adaptive scheme, because the parameters of the dynamic equations such as the machine inertia or the viscosity friction coefficient is not well known and these values can be easily changed generally during normal operation. Therefore, the observer can overcome the problem caused by using the dynamic equations, and the rotor speed estimation is constructed by using the Lyapunov function. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

컨베이어 추적을 위한 로보트 팔의 강인한 적응 제어계 설계 (A Design of Robust Adaptive Control Systems of Robot Arms for conveyor Tracking)

  • 엄기환;손동설;김주홍
    • 한국통신학회논문지
    • /
    • 제15권11호
    • /
    • pp.945-954
    • /
    • 1990
  • 로보트 팔이 컨베이어를 추적하는 강인한 적응제어계를 작업좌표에서 설계하였다. 제안한 설계방식은 모델규범형 설계방식과 Popov의 초안정정리를 기본으로 하였고 보조입력을 사용하여 Lyapunov 함수 V(t)와 시간미분 V와의 比의 크기를 크게하여 속응성을 좋게하여 과도특성을 개선하였다. 설계변수{lambda} 와 하중함수 $L_K$에서 $L_K$의 값이 {lambda}의 값보다 작은 경우에는 계통이 안정하나 $L_K$의 값이 {lambda}의 값보다 큰 경우에는 계통이 불안정하였다.

  • PDF

A Speed Sensorless Vector Control for Permanent Magnet Synchronous Motors based on an Adaptive Integral Binary Observer

  • Choi Yang-Kwang;Kim Young-Seok;Han Yoon-SeoK
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.70-77
    • /
    • 2005
  • This paper presents sensorless speed control of a cylindrical permanent magnet synchronous motor (PMSM) using the adaptive integral binary observer. In view of the composition with a main loop regulator and an auxiliary loop regulator, the normal binary observer has the feature of chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer, a new binary observer is formed by the addition of extra integral dynamics to the existing switching hyperplane equation. Also, because the parameters of the dynamic equations such as machine inertia or viscosity friction coefficient are not well known and these values can be changed during normal operations, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that the observer may overcome the problems caused by using dynamic equations. The rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to prove the effectiveness of the approach.

Stability Region Evaluation of Control Inputs by Fuzzy-Ttype Lyapunov Function for Nonlinear Control System

  • Kuwata, Akihiko;Kawamoto, Shunji;Kanetaka, Iwao;Takino, Katsuhiko;Ishigamr, Atsushi;Taniguchi, Tsunco;Tanaka, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.416-421
    • /
    • 1994
  • Electric Power system is a large scale nonlinear control one. Therefore, nonlinear control is desirable for the stabilizing, and it is thought that to establish an analytical method for optimal control inputs of AVR(automatic voltage regulator) and GOV(governor) is an important subject. In this paper, as a simple case, one-machine infinite-bus electric power model system with GOV is treated under the three kinds of control inputs; (i) fuzzy control input, (ii) linear control input and (iii) no control input. Next, the stability for each case is analyzed, and the three-dimensional stability regions and control responses are evaluated and compared. Finally, it is concluded that the linear control input does not necessarily give a good region and response, and the fuzzy one is better than others.

  • PDF

Exponential Stabilization of a Class of Underactuated Mechanical Systems using Dynamic Surface Control

  • Qaiser, Nadeem;Iqbal, Naeem;Hussain, Amir;Qaiser, Naeem
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.547-558
    • /
    • 2007
  • This paper proposes a simpler solution to the stabilization problem of a special class of nonlinear underactuated mechanical systems which includes widely studied benchmark systems like Inertia Wheel Pendulum, TORA and Acrobot. Complex internal dynamics and lack of exact feedback linearizibility of these systems makes design of control law a challenging task. Stabilization of these systems has been achieved using Energy Shaping and damping injection and Backstepping technique. Former results in hybrid or switching architectures that make stability analysis complicated whereas use of backstepping some times requires closed form explicit solutions of highly nonlinear equations resulting from partial feedback linearization. It also exhibits the phenomenon of explosions of terms resulting in a highly complicated control law. Exploiting recently introduced Dynamic Surface Control technique and using control Lyapunov function method, a novel nonlinear controller design is presented as a solution to these problems. The stability of the closed loop system is analyzed by exploiting its two-time scale nature and applying concepts from Singular Perturbation Theory. The design procedure is shown to be simpler and more intuitive than existing designs. Design has been applied to important benchmark systems belonging to the class demonstrating controller design simplicity. Advantages over conventional Energy Shaping and Backstepping controllers are analyzed theoretically and performance is verified using numerical simulations.