• Title/Summary/Keyword: Lung injury model

Search Result 88, Processing Time 0.041 seconds

Korean Red Ginseng water extract inhibits cadmium-induced lung injury via suppressing MAPK/ERK1/2/AP-1 pathway

  • Mitra, Ankita;Rahmawati, Laily;Lee, Hwa Pyoung;Kim, Seung A.;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.690-699
    • /
    • 2022
  • Background: Few studies reported the therapeutic effect of Korean Red Ginseng (KRG) in lung inflammatory diseases. However, the anti-inflammatory role and underlying molecular in cadmium-induced lung injury have been poorly understood, directly linked to chronic lung diseases (CLDs): chronic obstructive pulmonary disease (COPD), cancer etc. Therefore, in this study we aim to investigate the therapeutic activities of water extract of KRG (KRG-WE) in mouse cadmium-induced lung injury model. Method: The anti-inflammatory roles and underlying mechanisms of KRG-WE were evaluated in vitro under cadmium-stimulated lung epithelial cells (A549) and HEK293T cell line and in vivo in cadmium-induced lung injury mouse model using semi-quantitative polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), luciferase assay, immunoblotting, and FACS. Results: KRG-WE strongly ameliorated the symptoms of CdSO4-induced lung injury in mice according to total cell number in bronchoalveolar lavage fluid (BALF) and severity scores as well as cytokine levels. KRG-WE significantly suppressed the upregulation of inflammatory signaling comprising mitogen-activated protein kinases (MAPK) and their upstream enzymes. In in vitro study, KRG-WE suppressed expression of interleukin (IL)-6, matrix metalloproteinase (MMP)-2, and IL-8 while promoting recovery in CdSO4-treated A549 cells. Similarly, KRG-WE reduced phosphorylation of MAPK and c-Jun/c-Fos in cadmium-exposed A549 cells. Conclusion: KRG-WE was found to attenuate symptoms of cadmium-induced lung injury and reduce the expression of inflammatory genes by suppression of MAPK/AP-1-mediated pathway.

Protective Effects of Mundongcheongpye-eum on Lung Injury Induced by Elastase

  • Nam, Tae-Heung;Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.1042-1052
    • /
    • 2010
  • This study aimed to evaluate the protective effects of Mundongcheongpye-eum (MCE) on elastase-induced lung injury. The extract of MCE was treated to A549 cells and elastase-induced lung injury mice model. Then, various parameters such as cell-based cyto-protective activity and histopathological finding were analyzed. MCE showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B1, Cdc2, and Erk1/2, and gene expression of TNF-${\alpha}$ and IL-$1{\beta}$ in A549 cells. MCE treatment also revealed the protective effect on elastase-induced lung injury in mice model. This effect was evidenced via histopathological finding including immunofluence stains against elastin, collagen, caspase 3, and protein level of cyclin B1, Cdc2, and Erk1/2 in lung tissue. These data suggest that MCE has a pharmaceutical properties on lung injury. This study would provide an scientific evidence for the efficacy of MCE for clinical application to patients with chronic obstructive pulmonary disease.

Protective Effects of Seonpyejeongcheon-tang on Elastase-Induced Lung Injury in Mice (Elastase 매개성 폐조직 손상에 대한 선폐정천탕(宣肺定喘湯)의 보호효과)

  • Yoon, Jong-Man;Park, Yang-Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.84-101
    • /
    • 2010
  • Objectives : This study aimed to evaluate the protective effects of Seonpyejeongcheon-tang (SJT) on elastase-induced lung injury. Materials and Methods : The extract of SJT was treated to A549 cells and an elastase-induced lung injury mouse model. Then, various parameters such as cell-based cytoprotective activity and histopathological findings were analyzed. Results : SJT showed a protective effect on elastase-induced cytotoxicity in A549 cells. This effect was correlated with analysis for caspase 3 levels, collagen and elastin contents, protein level of cyclin B 1, Cdk1, and Erk1/2, and gene expression of TNF-$\alpha$ and IL-$1{\beta}$ in A549 cells. SJT treatment also revealed a protective effect on elastase-induced lung injury in mouse model. This effect was evidenced via histopathological findings, including immunofluoresence stains against elastin, collagen, and caspase 3, and protein levels of cyclin B1, Cdc2, and Erk1/2 in lung tissue. Conclusion : These data suggest that SJT has pharmaceutical properties on lung injury. This study thus provides scientific evidence for the efficacy of SJT for clinical application to patients with chronic obstructive pulmonary disease.

Inhibitory Effects of GGX on Lung Injury of Chronic Obstructive Lung Disease (COPD) Mice Model (만성폐쇄성폐질환 동물모델에서 GGX의 폐손상 억제 효과)

  • Kim, Tae Hyeon;Yang, Won Kyung;Lee, Su Won;Kim, Seung Hyung;Lyu, Yee Ran;Park, Yang Chun
    • The Journal of Korean Medicine
    • /
    • v.42 no.3
    • /
    • pp.56-71
    • /
    • 2021
  • Objectives: This study is aimed to evaluate the protective effects of GGX on lung injury of Chronic Obstructive Lung Disease (COPD) mice model. Materials and Methods: C57BL/6 mice were challenged with lipopolysaccharide (LPS) and cigarette smoke extract (CSE) and then treated with vehicle only (Control group), dexamethasone 3 mg/kg (Dexa group), gam-gil-tang 200 mg/kg (GGT group), GGX 100, 200, and 400 mg/kg (GGX group). After sacrifice, its bronchoalveolar lavage fluid (BALF) or lung tissue was analyzed with cytospin, Enzyme-Linked Immunosorbent Assay (ELISA), real-time polymerase chain reaction (PCR) and hematoxylin & eosin (H&E), and Masson's trichrome staining. Results: In the COPD model, GGX significantly inhibited the increase of neutrophils, TNF-𝛼, IL-17A, CXCL-1, MIP2 in BALF and TNF-𝛼, IL-1𝛽, IL-10 mRNA expression in lung tissue. It also decreased the severity of histological lung injury. Conclusion: This study suggests the usability of GGX for COPD patients by controlling lung tissue injury.

Effects of Gwaruhaengryeon-hwan on COPD and Particulate Matter Induced Lung Injury on a Mouse Model (만성폐쇄성폐질환 및 미세먼지 유발 폐손상 동물모델에서 과루행련환의 효과)

  • Lee, Chul-wha;Yang, Won-kyung;Lyu, Yee-ran;Kim, Seung-hyeong;Park, Yang-chun
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.3
    • /
    • pp.353-366
    • /
    • 2017
  • Objective: This study aimed to use a mouse model to evaluate the effects of Gwaruhaengryeon-hwan (GHH) on chronic obstructive pulmonary disease (COPD) and particulate matter induced lung injury. Materials and Methods: The study was carried out in two ways (in vitro, in vivo). In vitro RAW 264.7 cells (mouse macrophage) were used and analyzed by flow cytometry, ELISA. In vivo lipopolysaccharide (LPS) and cigarette smoke solution (CSS), or coal, fly ash, diesel exhaust particle (CFD) challenged mice were used and its BALF was analyzed by ELISA, lung tissue by real-time PCR. Results: In vitro, GHH maintained an 80-100% rate of viability. So cytotoxicity was not shown. In the ELISA analysis with RAW 264.7 cells, GHH significantly decreased NO over $30{\mu}g/ml$. In the ELISA analysis, GHH significantly decreased $TNF-{\alpha}$, IL-6 over $300{\mu}g/ml$. In the COPD model, the GHH 200 mg/kg dosage group, the application of GHH significantly decreased the increasing of neutrophils, $TNF-{\alpha}$, IL-17A, MIP2, CXCL-1 in BALF, $TNF-{\alpha}$, $IL-1{\beta}$ mRNA expression in lung tissue and histological lung injury. In the CFD induced lung injury model, the GHH 200 mg/kg dosage group, the application of GHH significantly decreased the increase of neutrophils, $TNF-{\alpha}$, IL-17A, MIP2, CXCL-1 in BALF, MUC5AC, $TGF-{\beta}$ mRNA expression in lung tissue and histological lung injury. Conclusion: This study suggests the usability of GHH for COPD patients by controlling lung tissue injury.

Preparation of In Vivo Rat Lung Model for Ischemia-Reperfusion Injury (허혈 재관류 손상 실험의 쥐 생체 모델 작성)

  • Lee, Won-Jin;Park, Hui-Cheol;Hong, Gi-U
    • Journal of Chest Surgery
    • /
    • v.28 no.11
    • /
    • pp.963-966
    • /
    • 1995
  • Ischemia reperfusion injury occurs in various diseases. The role of oxygen free radicals in IR injury of the lung has been spotlighted and many studies have been performed. In this study, we tried to prepare a stable rat lung model for IR injury, focusing on surrounding conditions as hilar stripped left lung, clamped left pulmonary artery and bronchus,and declamped after determined period was passed, and right main pulmonary aretery was clamped. Arterial blood gas analyes were performed at 1, 10, 20, 30, minutes after reperfusion. Before clamping, PaO2 was 95 to 120 mmHg in all animals. There were six groups; Group I : temperature 15o C, and 120 minutes clamping, Group II: 20 oC, and 120 minutes clamping, Group III : 25 oC, and 120 minutes clamping, Group IV : 15oC, 90 minutes clamping, Group V : 20 oC, 90 minutes clamping,Group VI: 20 oC, 75 minutes clamping. Each groups contained 10 Sprague Dayley rats. The humidity was maintained 100 % as circulation imerged isotonic Hartmann`s solution of the pleural cavity. In group IV, V, and VI, PaO2 decreased significantly in all animals immediately after reperfusion, but 43 % survived till 10 minutes after reperfusion, it was 74.0$\pm$5.7, 73.3$\pm$10.8,and 88.2$\pm$17.7 mmHg. Pulmonary edema was observed histologically in 2/10 animals in group IV, 6/10 in group V , 3/10 in group VI, 9/10 in group I, and the other lungs showed all edema. We established a stable model by setting ischemic time,and temperature, between 75 to 90 minutes,15 to 20o C, and isotemperature Hartmann`s solution immersion of the pleural cavity.

  • PDF

Effects of Root of Curcumin longa on LPS-induced Lung Injury (강황이 LPS로 유도된 폐손상에 미치는 영향)

  • Oh, Ji-Seok;Yang, Su-Young;Kim, Min-Hee;Namgung, Uk;Park, Yang-Chun
    • The Journal of Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.89-102
    • /
    • 2013
  • Objectives: This study aimed to evaluate the effects of root of Curcumin longa (RCL) on LPS-induced COPD (chronic obstructive pulmonary disease) model. Materials and Methods: Extract of RCL was treated to RAW 264.7 cells and LPS-induced COPD mouse model. Then, various parameters such as cell-based protective activity, airflow limitation, accumulation of immune cells and histopathological finding were analyzed. Results: RCL showed a protective effect on LPS-induced cytotoxicity in RAW 264.7 cells. RCL treatment also revealed a protective effect on LPS-induced lung injury in a COPD mouse model. This effect was demonstrated via the reduction of accumulation of immune cells and pathophysiological regulation of caspase 3, elastin and collagen in lung tissue. Conclusions: These data suggest that RCL has a pharmaceutical property on lung injury. This study provides scientific evidence for the efficacy of RCL for clinical application to COPD patients.

Leukocyte Sequestration and Free Radical-Mediated Lung Injury in Ovine Cardiopulmonary bypass Using Membrane Oxygenator (양에서 막형 산화기를 사용하여 심폐바이패스할 경우 백혈구격리 및 자유라디칼로 중재되는 폐손상)

  • 김원곤;신윤철;서정욱
    • Journal of Chest Surgery
    • /
    • v.32 no.11
    • /
    • pp.978-983
    • /
    • 1999
  • Background: Complement activation with transpulmonary leukocyte sequestration is considered a main mediator leading to ischemia-reperfusion lung(I-R) injury. We studied the role of leukocytes in the formation of I-R injury in ovine cardiopulmonary bypass(CPB) model with a membrane oxygenator. Material and Method: Five sheep were used. CPB circuitry consisted of a roller pump(American Optical Corp., Greenwich, CT, USA) and a membrane oxygenator(UNIVOX-IC, Bentley, Baxter Health Corp, Irvine, CA, USA). The CPB time was fixed at 120 min. Ten minutes after the start of CPB, total CPB was established. Thereafter a total CPB of 100 min was performed, followed by another 10 min of partial CPB. The CPB was discontinued and the animals were fully recovered. For measuring left and right atrial leukocyte counts, blood samples were taken before thoracotomy, 5 min and 109 in after the start of CPB, and 30 min and 120 min after weaning. C3a was measured before thoracotomy, 109 min after the start of CPB, and 30 min and 120 min after weaning. Plasma malondialdehyde(MDA) was checked before thoracotomy, 109 min after the start of CPB, and 30 min after weaning. One to two grams of lung tissue were taken for water content measurement before thoracotomy, 109 min after the start of CPB, and 30 min after weaning. Lung biopsy specimens were examined by light and electron microscopy. Result: Of 5 animals, 4 survived the experimental procedures. Of these, 3 animals survived on a long-term basis. No significant differences in transpulmonary gradients of leukocyte were found and no significant complement activation was expressed by C3a levels. MDA level did not show significant changes related to lung reperfusion despite an increase after the start of CPB. On both light and electron microscopic examinations, mild to moderate acute lung change was observed. Interstitial edema, leakage of erythrocytes into the alveolar space and endothelial cell swelling were the main findings. Water content of the lung showed a slight increase after the start of CPB, but there was no statistical significance. Conclusion: These findings indicate that ischemia-repersusion lung injury may not be from complement activation-leukocyte sequestration but from another source of oxygen free radicals related to CPB.

  • PDF

Changes of Serum Ferritin in Acute Lung Injury Induced by Intestinal Ischemia/Reperfusion

  • Park, Sung-Dong;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.187-191
    • /
    • 2006
  • Serum ferritin levels are increased in subjects at-risk for or with acute lung injury (ALI), and there are observations to suggest that increases in serum ferritin levels may help predict the development of ALI in at-risk individuals. To deepen our understanding of increases of serum ferritin and their relationship to the development of ALI, we measured serum ferritin levels before and after intestinal ischemia/reperfusion (I/R) injury in rats, and found that serum ferritin levels increased significantly following I/R. Increases in serum and lavage ferritin levels paralleled increases in lung inflammation (lavage leukocyte numbers and tissue myeloperoxidase activities) and lung leak (lavage protein levels). In contrast, pre-treatment of rats with mepacrine (60 mg/kg, i.p.), a phospholipase $A_2$ inhibitor, attenuated not only I/R-induced serum and lavage ferritin increases, but also the development of ALI. These findings indicate that, besides of human subjects with ALI, serum ferritin levels increase early on also in an animal model of ALI. Therefore, serum and lavage ferritin can be a candidate for early biomarker of ALI.