• Title/Summary/Keyword: Lung cancer cells

Search Result 998, Processing Time 0.031 seconds

Concept and limitation of breast cancer stem cells (유방암 줄기세포 개념 및 제한점)

  • Kim, Jong Bin;An, Jeong Shin;Lim, Woosung;Moon, Byung-In
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.46-50
    • /
    • 2018
  • Cancer, a leading mortality disease following cardiovascular disease worldwide, has high incidence as one out of every four adults in Korea. It was known to be caused by several reasons including somatic mutation, activation of oncogene and chromosome aneuploidy. Cancer cells show a faster growth rate and have metastatic and heterogeneous cell populations compared to normal cells. Cancer stem cells, the most invested field in cancer biology, is a theory to explain heterogeneous cell populations of cancer cells among several characteristics of cancer cells, which is providing the theoretical background for incidence of cancer and treatment failure by drug resistance. Cancer stem cells initially explain heterogeneous cell populations of cancer cells based on the same markers of normal stem cells in cancer, in which only cancer stem cells showed heterogeneity of cancer cells and tumor initiating ability of leukemia. Based on these results, cancer stem cells were reported in various solid cancers such as breast cancer, liver cancer, and lung cancer. Breast cancer stem cells were first reported in solid cancer which had tumor initiating ability and further identified as anti-cancer drug resistance. There were several identification methods in breast cancer stem cells such as specific surface markers and culture methods. The discovery of cancer stem cells not only explains heterogeneity of cancer cells, but it also provides theoretical background for targeting cancer stem cells to complete elimination of cancer cells. Many institutes have been developing new anticancer drugs targeting cancer stem cells, but there have not been noticeable results yet. Many researchers also reported a necessity for improvement of current concepts and methods of research on cancer stem cells. Herein, we discuss the limitations and the perspectives of breast cancer stem cells based on the current concept and history.

Immune Evasion of G-CSF and GM-CSF in Lung Cancer

  • Yeonhee Park;Chaeuk Chung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • Tumor immune evasion is a complex process that involves various mechanisms, such as antigen recognition restriction, immune system suppression, and T cell exhaustion. The tumor microenvironment contains various immune cells involved in immune evasion. Recent studies have demonstrated that granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce immune evasion in lung cancer by modulating neutrophils and myeloid-derived suppressor cells. Here we describe the origin and function of G-CSF and GM-CSF, particularly their role in immune evasion in lung cancer. In addition, their effects on programmed death-ligand 1 expression and clinical implications are discussed.

Induction of Apoptosis in Arsenic Trioxide-treated Lung Cancer A549 Cells by Buthionine Sulfoximine

  • Han, Yong Hwan;Kim, Sung Zoo;Kim, Suhn Hee;Park, Woo Hyun
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an $IC_{50}$ of more than $50{\mu}m$. Low doses of ATO or BSO ($1{\sim}10{\mu}m$) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (${\Delta}{\Psi}_m$) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.

Osteopontin Potentiates Pulmonary Inflammation and Fibrosis by Modulating IL-17/IFN-γ-secreting T-cell Ratios in Bleomycin-treated Mice

  • Oh, Keunhee;Seo, Myung Won;Kim, Young Whan;Lee, Dong-Sup
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.142-149
    • /
    • 2015
  • Lung fibrosis is a life-threatening disease caused by overt or insidious inflammatory responses. However, the mechanism of tissue injury-induced inflammation and subsequent fibrogenesis remains unclear. Recently, we and other groups reported that Th17 responses play a role in amplification of the inflammatory phase in a murine model induced by bleomycin (BLM). Osteopontin (OPN) is a cytokine and extracellular-matrix-associated signaling molecule. However, whether tissue injury causes inflammation and consequent fibrosis through OPN should be determined. In this study, we observed that BLM-induced lung inflammation and subsequent fibrosis was ameliorated in OPNdeficient mice. OPN was expressed ubiquitously in the lung parenchymal and bone-marrow-derived components and OPN from both components contributed to pathogenesis following BLM intratracheal instillation. Th17 differentiation of $CD4^+$ ${\alpha}{\beta}$ T cells and IL-17-producing ${\gamma}{\delta}$ T cells was significantly reduced in OPN-deficient mice compared to WT mice. In addition, Th1 differentiation of $CD4^+$ ${\alpha}{\beta}$ T cells and the percentage of IFN-$\gamma$-producing ${\gamma}{\delta}$ T cells increased. T helper cell differentiation in vitro revealed that OPN was preferentially upregulated in $CD4^+$ T cells under Th17 differentiation conditions. OPN expressed in both parenchymal and bone marrow cell components and contributed to BLM-induced lung inflammation and fibrosis by affecting the ratio of pathogenic IL-17/protective IFN-$\gamma$ T cells.

Rg3-enriched red ginseng extract promotes lung cancer cell apoptosis and mitophagy by ROS production

  • Hwang, Soon-Kyung;Jeong, Yun-Jeong;Cho, Hyun-Ji;Park, Yoon-Yub;Song, Kwon-Ho;Chang, Young-Chae
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.138-146
    • /
    • 2022
  • Background: Red Ginseng has been used for many years to treat diseases. Ginsenoside Rg3 has documented therapeutic effects, including anticancer and anti-inflammatory activities. However, the anticancer effect of Rg3-enriched red ginseng extract (Rg3-RGE) and its underlying mechanisms have not been fully explored. We investigated whether Rg3-RGE plays an anti-tumor role in lung cancer cells. Methods: To examine the effect of Rg3-RGE on lung cancer cells, we performed cell viability assays, flow cytometry, western blotting analysis, and immunofluorescence to monitor specific markers. Results: Rg3-RGE significantly inhibited cell proliferation and induced mitochondria-dependent apoptosis. Furthermore, Rg3-RGE also increased expression of mitophagy-related proteins such as PINK1 and Parkin. In addition, treatment with Rg3-RGE and mitophagy inhibitors stimulated cell death by inducing mitochondria dysfunction. Conclusions: Rg3-RGE could be used as a therapeutic agent against lung cancer.

ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha

  • Seong-Jun Park;Naeun Lee;Chul-Ho Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.

Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells

  • Yu, Jae Sik;Roh, Hyun-Soo;Baek, Kwan-Hyuck;Lee, Seul;Kim, Sil;So, Hae Min;Moon, Eunjung;Pang, Changhyun;Jang, Tae Su;Kim, Ki Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.562-570
    • /
    • 2018
  • Background: Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. Methods: Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. Results and conclusion: Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with $IC_{50}$ values ranging from $161.1{\mu}M$ to $264.6{\mu}M$. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.

The Induction Effect of Apoptosis in A549 Human Lung Cancer Cells by the Trichosanthes Kirilowii Pharmacopuncture Solution (천화분 약침액의 A549 폐암 세포주에서 apoptosis 유발효과)

  • Choi, Tae-Yeon;Lee, Sung-Won;Ryu, Yeon-Hee;Ban, Hyo-Jeong;Seo, Geun-Young;Kim, Jae-Hyo;Ahn, Seong-Hun;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.27 no.4
    • /
    • pp.15-23
    • /
    • 2010
  • Objectives : In order to confirm the anti-cancer effect of Trichosanthes kirilowii pharmacopuncture fluid, this study was proceeded. Methods : A549 lung cancer cells were cultured to be treated by Trichosanthes kirilowii pharmacopuncture fluid as dose dependent manner for 72 hours. And then the cell viability, nucleus fragmentaion, p21 and p53 protein expression, Bcl-2 and Bax protein expression, procaspase-3 PARP protein expression. Results : 1. Trichosanthes kirilowii pharmacopuncture fluid decrease A549 cell viability as dose dependent manner. 2. Trichosanthes kirilowii pharmacopuncture fluid induced the nucleus fragmentation in A549 lung cancer cells as dose dependent manner. 3. Trichosanthes kirilowii pharmacopuncture fluid increase the p21 and p53 protein expression. 4. Trichosanthes kirilowii pharmacopuncture fluid decrease the Bcl-2 protein expression but cannot affect the Bax protein expression. 5. Trichosanthes kirilowii pharmacopuncture fluid increase the activation of caspase-3 and PARP protein. Conclusions : As the above results, it was conclused the Trichosanthes kirilowii pharmacopuncture fluid had the anti-cancer effects to induce apoptosis.

The Usefulness of Ultrasound-Guided Fine Needle Aspiration Cytology of Impalpable Neck Nodes in Patients with Lung Cancer (폐암 환자에서 촉진되지 않는 경부 림프절에 대한 초음파 유도 하 세침흡인 세포검사의 유용성)

  • Kim, Hee Kyoo;Ha, Seung In;Kim, Yu Ri;Park, Chan Bog;Oak, Chul Ho;Jang, Tae Won;Jung, Maan Hong;Oh, Kyung Seung;Chun, Bong Kwon;Lee, Min Ki;Park, Soon Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.505-513
    • /
    • 2004
  • Background : In lung cancer patients, the presence of metastatic neck nodes is a crucial indicator of inoperabilty. So thorough physical examination of neck is always mandatory, but sometimes those are hardly palpable even by the skillful hand. Ultrasonography is a useful diagnostic method in detection of small impalpable lymph nodes and in guidance of fine needle aspiration biopsy. In this study we evaluated the clinical usefulness of ultrasonography(USG) and ultrasound-guided fine needle aspiration cytology(US-FNA) in lung cancer patients without palpable neck nodes. Methods and Materials : From Sep 2002 to Sep 2003, 36 non-small cell lung cancer patients (20 adenocarcinoma, 16 squamous cell cancer) and 10 small cell lung cancer patients without palpable neck nodes on physical examiation were enrolled. patients who had contralateral mediastinal nodal enlargement(>1cm) on chest CT were excluded. After the routine check of USG on the neck, US-FNA was done in cases with enlarged neck nodes (${\geq}5mm$ in the short axis). The presence of enlarged lymph node on USG, and of malignant cells on cytology were evaluated by the histological type and the patients' clinical stage of lung cancer. Results : Among 36 non-small lung cell cancer patients, 14 (38.8%) had enlarged neck nodes on USG, and 5 of 10 small cell lung carcinoma patients. The mean diameter of the neck nodes was 9.8 mm (range, 7-12 mm). US-FNA of 14 non-small cell lung cancer patients revealed tumor cells in eight patients (57.1%). In 5 small cell lung cancer pateints, tumor cells were found in all cases. By the result of US-FNA, the clinical stage of 8 out of 36 (22.2%) non-small cell lung cancer patients had changed, including two cases of shift from the operable IIIa to the inoperable IIIb. In small cell lung cancer patients their clinical stage was not changed after US-FNA, but their pathological diagnosis was easily done in two cases, in whom endobronchial lesions were not found on bronchoscopy. Conclusions : USG and US-FNA of neck node seem to be safe, sensitive and cost-effective diagnostic tools in the evaluation of lung cancer patients without palpable neck nodes.

Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells

  • Kwak, Youngeun;Ju, Jihyeung
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS: Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS: Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and $350{\mu}g/ml$) and completely abolished the colony formation in soft agar (at the concentration of $350{\mu}g/ml$). Treatment with PLE at the $350{\mu}g/ml$ concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to $350{\mu}g/ml$ was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS: These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo.