• Title/Summary/Keyword: Lumped Parameter System

Search Result 139, Processing Time 0.024 seconds

Hybrid position/force control of flexible manipulators

  • Kim, Jin-Soo;Suzuki, Kuniaki;Konno, Atsushi;Uchiyama, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.408-411
    • /
    • 1995
  • In this paper, we discuss the force control of flexible manipulators. Since the force control of flexible manipulators with planar one or two links using the distributed-parameter modeling has been the subject of a considerable number of publications until now, real time computations of the force control schemes are possible. But, application of those control schemes to multi-link spatial manipulators is fairly complicated. In this paper, we apply a concise hybrid position/force control scheme for a flexible manipulators. We use a lumped-parameter modeling for the flexible manipulators. The Hamilton's principle is applied to derive the equations of motion for the system and then, state-space model is obtained by the Lagrange's method. Finally, comparison of simulation results with experimental results is given to show the performance of our method.

  • PDF

System analysis on the hemodynamics of cerebral circulation (뇌순환계 혈류역학에 대한 시스템 해석)

  • Shim Eun Bo;Ko Hyung Jong;Min Byung Goo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.721-722
    • /
    • 2002
  • The aim of this work is to analyze changes in cerebral hemodynamics and intracranial pressure mediated by cerebral blood flow challenges in patients with acute heart arrest. Lumped parameter model with feedback mechanism is utilized to simulate the hemodynamics of brain blood flow in case 40 min T-PLS operation is applied to patients of cardiac arrest. Numerical solutions show that cerebral blood flow and perfusion pressure in patients of cardiac arrest are sharply recovered in the initial state of T-PLS operation.

  • PDF

A study on the delay-characteristics and hankel operators of input delay systems (입력 시간지연 시스템의 한켈 연산자와 지연특성에 관한 연구)

  • Ha, Hee-Kwon;Hwang, I-Cheol;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • This paper studies the delay-characteristics using the singular values and vectors of Hankel operators for input delay systems. First, the computational method of Hankel singular values and their corresponding singular vectors are introduced, and then it is analytically provea that all the Hankel singular vlues have a monotone increasing properties as the length of delay time increases. Furthermore, through a simple numerical example, it is shown that the Hankel singular values are dependent only on the ratio of the time constant of a lumped parameter system to the length of delay , and in case that the time constant is relatively larger than the delay time, the lumped parameter characteristic has a great influence on the input delay systems.

  • PDF

Computational Study on the Hemodynamics of Cardiovascular System Including Short-term Auto-regulation Functions (단기적 자율조절기능을 포함하는 심혈관계 혈류역학 모델링에 관한 수치적 연구)

  • 심은보;정찬일;최한고
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.393-402
    • /
    • 2001
  • A computational model representative of cardiovascular circulation was built using 12 standard lumped compartments. Especially, both the baroreceptor reflex and the cardiopulmonary reflex control model were implemented to explain the auto-regulation of cardiovascular system. Another important aspect of this model is to utilize the impulse-response curve of the nerve system in transferring the impulse error signals to autonomous nerve system. For the verification of this model, we have computed the normal hemodynamic conditions and compared those with the clinical data. Then. hemodynamic shock of 20% hemorrhage to cardiovascular system was simulated to test the effects of the control system model. The results of these two simulations were well matched with the experimental ones. The steady state LBNP simulation was also performed. The transient changes of hemodynamic variables due to ramp increase of bias pressure of LBNP showed good agreement with the physiological experiments. Numerical solution using only the baroreflex model showed relatively a larger deviation from the experimental data. compared with the one using the control model haying both the baroreflex and the cardiopulmonary reflex systems, which shows an important role of the cardiopulmonary reflex system for the simulation of the hemodynamic behavior of the cardiovascular system .

  • PDF

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

A Study on the Feed Rate Optimization of a Ball Screw Driven Machine Tool Feed Slide for Minimum Vibrations

  • Choi, Yong-Hyu;Choi, Hoon-Ki;Kim, Soo-Tae;Choi, Eung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1028-1032
    • /
    • 2004
  • In order to prevent machine tool feed slide system from transient vibrations during operations, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a ball screw driven machine tool feed slide system for its minimum vibration. Firstly, a ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter system. Next, a feed rate optimization of the system was carried out for minimum vibrations. The main idea of the feed rate optimization is to find out the most appropriate smooth acceleration profile with jerk continuity. A genetic algorithm was used in this feed rate optimization

  • PDF

A Study on the Feed Rate Optimization of a Linear Motored Feed Drive System for Minimum Vibrations (Linear Motor 이송계의 진동 최소화를 위한 이송속도 최적화)

  • 최영휴;홍진현;최응영;김태형;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.321-325
    • /
    • 2004
  • Linear motor feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modem machine tools require high speed and high precision feed drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a linear motor, for its minimum vibrations. Firstly, a 4-degree-of-freedom lumped parameter model is proposed for the vibration analysis of a linear motor driven machine tool feed drive system. Next, a feed rate optimization of the feed slide is carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile with jerk continuity. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

A Study on the Feed Rate Optimization of a Ball Screw Feed Drive System for Minimum Vibrations (볼스크류 이송계의 진동 최소화를 위한 이송속도 최적화)

  • Choi, Young-Hyu;Hong, Jin-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.962-966
    • /
    • 2004
  • Ball screw feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modern machine tools require high speed and high precision and drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slide system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a ball screw, for its minimum vibrations. Firstly, a 6-degree-of-freedom lumped parameter model was proposed for the vibration analysis of a ball screw driven machine tool feed drive system. Next, a feed rate optimization of the feed slide was carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile having finite jerk. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

Simulation Study of Cardiovascular Response to Hemodialysis (혈액투석 중 심혈관계 응답의 수치적 연구)

  • 임기무;민병구;고형종;심은보
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1236-1239
    • /
    • 2004
  • The object of this study is to develop a model of the cardiovascular system capable of simulating the short-term transient and steady-state hemodynamic responses such as hypotention and disequilibrium syndrome during hemodialysis or hemofiltration. The model consists of a closed loop 12 lumped-parameter representation of the cardiovascular circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes and 3 compartmental body fluid and solute kinetic model. The hemodialysis model includes the dynamics of sodium, urea, and potassium in the intracellular and extracellular pools, fluid balance equations for the intracellular, interstitial, and plasma volumes. We have presented the results of many different simulations performed by changing a few model parameters with respect to their basal values.

  • PDF

Shock Response Analysis of the Optical Disk Drive in Consideration of Disk and Pick up (디스크와 픽업을 고려한 광디스크 드라이브의 충격응답해석)

  • Shin, Eun-Jung;Chang, Young-Bae;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1261-1267
    • /
    • 2004
  • As the optical disk drives are designed for portable and hostile environment, they have a possibility to miss the track and not to read the data. The shock response of optical disk drives must be analyzed. This research shows the shock response analysis of the optical disk drive. The optical disk drive is modeled as the lumped parameter system in consideration of the pickup and the disk. The lumped parameter model is compared with finite element model in order to verify results. Finally, shock responses are compared with the change of the shock magnitude and the duration.