• Title/Summary/Keyword: Lumped Parameter Method

Search Result 137, Processing Time 0.028 seconds

A new lumped equivalent circuits for spiral inductor with metal thickness (금속의 두께를 고려한 나선형 인덕터의 집중형 등가 회로의 제안)

  • 오데레사;김흥수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.9
    • /
    • pp.21-27
    • /
    • 1997
  • Square spiral inductors are designed with EM program in accordance with the inner diameter and the metal thickness which is 0.2.mu.m and 20.mu.m respectively. We propose a parameter extraction method based on the S-parameter. Lumped equivalent circuits of spiral inductors are analyed with reflection coefficient S$_{11}$, of witch freqency rnage is 1~10GHz. When metal thickness is 0.2.mu.m, S$_{11}$ with EM simulation is not the same as S$_{11}$ that of SPICE simulation. So we suggests a new lumped equivalent circuits which compensate circuits. Te new lumped equivalent circuits are adequate for other inductor with small scale at high frequencies.ncies.

  • PDF

Lumped Parameter Modeling and Analysis of Electromagnetic Vibration Exciter for Vibrating Rapper of Electrostatic Precipitator (전기 집진기의 진동 탈진을 위한 전자기 진동 가진기의 집중매개변수 모델링 및 해석)

  • Kim, Je-Hoon;Lee, Jung-Hun;Kim, Jin-Ho;Jeong, Sang-Hyun;Han, Bang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • The miniaturization of electrostatic precipitator is becoming a key element to the success of the efficient electrostatic precipitator due to the limited space allowed to install electrostatic precipitator in subway tunnel. Nowadays, a research on electrostatic precipitator in urban railroad equipment technology is under an active study. Finite element method has been used one of the most popular techniques, but it consumes a lot of time especially in computation iterations. Accordingly, the lumped parameter analysis can be an alternative tool to FEM because of its computation iteration capability with fair accuracy. In this paper, lumped parameter model and the simulation results are presented. In addition, the result of lumped parameter analysis is compared with those obtained from finite element analysis for verification.

Hybrid position/force control of flexible manipulators

  • Kim, Jin-Soo;Suzuki, Kuniaki;Konno, Atsushi;Uchiyama, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.408-411
    • /
    • 1995
  • In this paper, we discuss the force control of flexible manipulators. Since the force control of flexible manipulators with planar one or two links using the distributed-parameter modeling has been the subject of a considerable number of publications until now, real time computations of the force control schemes are possible. But, application of those control schemes to multi-link spatial manipulators is fairly complicated. In this paper, we apply a concise hybrid position/force control scheme for a flexible manipulators. We use a lumped-parameter modeling for the flexible manipulators. The Hamilton's principle is applied to derive the equations of motion for the system and then, state-space model is obtained by the Lagrange's method. Finally, comparison of simulation results with experimental results is given to show the performance of our method.

  • PDF

MODELING AND PARAMETER IDENTIFICATION FOR A PASSIVE HYDRAULIC MOUNT

  • Zhang, Y.X.;Zhang, J.W.;Shangguan, W.B.;Feng, Q.Sh.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.233-241
    • /
    • 2007
  • A lumped parameter model is proposed for the analysis of dynamic behaviour of a Passive Hydraulic Engine Mount (PHEM), incorporating inertia track and throttle, which is characterized by effective and efficient vibration isolation behaviour in the range of both low and high frequencies. Most of the model parameters, including volume compliance of the throttle chamber, effective piston area, fluid inertia and resistance of inertia track and throttle are identified by an experimental approach. Numerical predictions are obtained through a finite element method for responses of dynamic stiffness of the rubber spring. The experiments are made for the purpose of PHEM validation. Comparison of numerical results with experimental observations has shown that the present PHEM achieves good performance for vibration isolation.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc-Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.659-666
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological(ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

Dynamic Modeling of ER Damper Considering Fluid Compressibility (유체의 압축성을 고려한 ER 댐퍼의 동적 모델링)

  • Seong, Min-Sang;Ha, Sung-Hun;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.438-443
    • /
    • 2009
  • This paper proposes a new method for dynamic modeling of electrorheological (ER) damper considering fluid compressibility. After describing configuration and operating principle of the ER damper, a quasi-static modeling of the ER damper is conducted on the basis of Bingham model of ER fluid. Subsequently, the dynamic model for describing the ER damper considering compressibility of ER fluid and gas chamber is obtained using the lumped parameter method. This method includes dynamic motions of annular duct, upper chamber, lower chamber and connecting pipe. The hysteresis behavior of the ER damper is evaluated through computer simulations and compared with experimental results. In addition, the hysteresis behavior due to the compressibility of ER fluid and gas chamber is investigated through computer simulations.

  • PDF

Performance Analysis of Heat Sink for LED Downlight Using Lumped Parameter Model (집중변수모델을 이용한 LED조명등 방열기구의 성능분석)

  • Kim, Euikwang;Jo, Youngchul;Yi, Seungshin;An, Younghoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.64-72
    • /
    • 2017
  • The performance analysis of the 70 W class LED lighting system suitable for the Middle East environment was performed using the lumped parameter model. The LED light is composed of a heating substrate, a heat pipe, and a heat sink. We divided the LED lights into four objects and applied energy equilibrium to each of them to establish four lumped nonlinear differential equations. The solution of the simultaneous equations was obtained by the Runge-Kutta method. Convective heat transfer coefficients of the lumped model were obtained by multidimensional CFD analysis. As a result of comparison with experiment, it was found that the heating substrate had an error of $1.5^{\circ}C$ and the upper heat sink had an error of $1.8^{\circ}C$ and the relative error was about 0.6 %. Using this model, temperature distribution analysis was performed for normal operating conditions with an ambient temperature of $55^{\circ}C$, with sunlight only, with abnormal operating conditions with sunlight, and without an upper heat sink.

Vibration Suppression Control of Constrained Spatial Flexible Manipulators (구속받는 3차원 유연 매니퓨레이터의 진동억제 제어)

  • 김진수;우찌야마마사루
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.189-195
    • /
    • 2000
  • For free motions, vibration suppression of flexible manipulators has been one of the hottest research topics. However, for constrained motions, a little effort has been devoted for vibration suppression control. Using the dependency of elastic deflections of links on contact force under static conditions, vibrations for constrained planar two-link flexible manipulators have been suppressed successfully by controlling the contact force. However, for constrained spatial multi-link flexible manipulators, the vibrations cannot be suppressed by only controlling the contact force. So, the aim of this paper is to clarify the vibration mechanism of a constrained, multi-DOF, flexible manipulator and to devise the suppression method. We apply a concise hybrid position/force control scheme to control a flexible manipulator modeled by lumped-parameter modeling method. Finally, a comparison between simulation and experimental results is presented to show the performance of our method.

  • PDF

Characteristic Analysis of Capacitor-Run Single Phase Inuction Motor by Equivalent Circuit Coupled with Finite Element Method (유한요소법과 등가회로 해석의 결합에 의한 콘덴서 구동형 단상유도전동기의 특성해석)

  • Nam, Hyuk;Ha, Kyung-Ho;Kang, Gyu-Hong;Hong, Jung-Pyo;Jeong, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.837-839
    • /
    • 2000
  • Capacitor-run single induction motors have the unbalanced elliptic rotating magnetic field so that it is difficult to analyze the characteristic and calculate the accurate slot leakage reactance of the rotor with the closed slot by using the lumped parameter. In this paper, the characteristic is analyzed by the symmetrical coordinate method in terms of the lumped parameter coupled with the numerical analysis. The secondary parameters are calculated by the one slot pitch boundary condition applying to Finite Element Method (FEM). The analysis results are compared with experimental ones.

  • PDF