• 제목/요약/키워드: Lumped Mass Model

검색결과 156건 처리시간 0.04초

업데이트된 집중질량스틱모델과 진동대실험 지진응답 비교 (Comparison of Seismic Responses of Updated Lumped-Mass Stick Model and Shaking Table Test Results)

  • 선휘창;홍상현;노화성
    • 한국지진공학회논문집
    • /
    • 제23권4호
    • /
    • pp.231-238
    • /
    • 2019
  • A conventional lumped-mass stick model is based on the tributary area method to determine the masses lumped at each node and used in earthquake engineering due to its simplicity in the modeling of structures. However the natural frequencies of the conventional model are normally not identical to those of the actual structure. To solve this problem, recently an updated lumped-mass stick model is developed to provide the natural frequencies identical to actual structure. The present study is to investigate the seismic response accuracy of the updated lumped-mass stick model, comparing with the response results of the shaking table test. For the test, a small size four-story steel frame structure is prepared and tested on shaking table applying five earthquake ground motions. From the comparison with shaking table test results, the updated model shows an average error of 3.65% in the peak displacement response and 9.68% in the peak acceleration response. On the other hand, the conventional model shows an average error of 5.15% and 27.41% for each response.

구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발 (Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures)

  • 노화성;윤지만;이후석;이종세
    • 한국지진공학회논문집
    • /
    • 제16권4호
    • /
    • pp.19-26
    • /
    • 2012
  • 구조물의 내진설계 또는 내진성능평가를 위해서는 구조물의 축소모형을 이용한 실험적 분석이나 유한요소모델을 기반으로 한 수치적 방법이 고려된다. 수치적 방법을 위해서는 정교한 모델링이 요구될 경우 3차원 유한요소해석을 실시하나 민감도 분석이나 지진 취약도 분석과 같은 방대한 지진데이터를 이용한 평가에서는 집중질량모델이 선호된다. 하지만 기존의 집중질량모델은 일반적으로 구조물의 기하학적 형상을 고려하여 집중질량을 산출하는 방식인데, 이 경우 제공되는 고유치는 실구조물의 고유치와 일치하지 않는다. 본 연구에서는 이러한 문제점을 개선하고 실구조물과 유사한 동적 거동을 발현하는 새로운 형식의 주파수 순응형 집중질량모델을 제안하였다. 제안된 모델은 실구조물의 고유치와 고유 벡터, 모드 형상 등을 고려하여 생성하며, 모델의 성능을 검증하기 위해 비균일 단면을 갖는 기둥에 대해 동적해석을 수행하였다. 또한 감쇠비에 따른 동적성능을 분석하기 위해 1%에서 5%까지의 Rayleigh Damping 적용하여 그 결과를 유한요소모델 결과와 비교하였다.

유체 봉입 마운트의 동적 특성화를 위한 집중질량 요소를 갖는 기계적 모형의 문제점 파악과 실험 방법 개선을 통한 수력학적 모형의 타당성 확인 (A Study on Shortcomings of Mechanical Model with Lumped Mass for Dynamic Characterization of Hydraulic Mounts and Confirmation of Hydraulic Model by Improvement of Experimentations)

  • 배만석;이준화;김광준
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.393-399
    • /
    • 2003
  • Hydraulic mounts show strong1y frequency-dependent stiffness and damping characteristics in low frequency range, which result from so called inertia track dynamics. A lumped mass has been incorporated in several mechanical models of the literature to take the inertia effect of the fluid in the track into consideration. Although complex s%illness by the mechanical model showed good agreements with the measured values, there exists a critical pitfall. In this paper, the shortcomings of mechanical models with lumped mass for hydraulic founts are clearly identified by illustrating actual measurements of the stiffness parameters for a hydraulic mount. It is conclusively discussed that the inertia effect of the fluid flow through the circular track is significant but latent. As an alternative to the mechanical model, a hydraulic model is claimed to be used for further dynamic analysis of engine/mount system or whole car system.

집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석 (Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model)

  • 오승훈;정재환;박병원;권용주;정동호
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.

댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델 (Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir Systems)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.143-150
    • /
    • 2000
  • A physical lumped parameter model is proposed for the time domain analysis of dam-reservoir system. The exact solution of transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and the domains. Mass and damping coefficient are obtained from asymptotic behavior of the frequency domain solution. Further refinement to the lumped model is made by approximating the kernel function of the convolution integral in the exact solution. Finally a new physical lumped parameter model is proposed that consists of two masses, a spring and two dampers for each mode. It is demonstrated that new lumped parameter model of transmitting boundary can give excellent results.

  • PDF

집중질량 변화에 따른 수중 고속 운동체의 구조 안정성 해석 (Structual Stability Analysis According to the Lumped Mass of High Speed Vehicles in Underwater)

  • 오경원;서주노;조병구;류시웅;공창덕
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.54-59
    • /
    • 2009
  • In this paper, the effect of the position and size of a lumped mass on the structural stability of a high speed underwater vehicle is presented. For simplicity, a real vehicle was modeled as a follower force subjected beam that was resting on an elastic foundation, and the lumped mass effect was simplified as an elastic intermediate support. The stability of the simplified model was numerically analyzed based on the Finite element method (FEM). This numerical simulation revealed that flutter type instability or divergence type instability occurs, depending on the position and stiffness of the elastic intermediate support, which implies that the instability of the real model is affected by the position and size of the lumped mass.

질량 변화에 따른 Lumped Mass Beam Model의 이론적 동특성 규명 (Theoretical Approach; Identification of Dynamic Characteristics for Lumped Mass Beam Model due to Changes of Mass)

  • 누룰파와지;윤지현;강귀현;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.389-392
    • /
    • 2008
  • This paper predicts the changes of natural frequencies due to the changes of mass at different point mass stations by using iterative calculation Transfer Matrices Method for different boundary conditions of a single beam structure (fixed-free and fixed-fixed beam). Firstly, the first three natural frequencies of an original beam are obtained using Transfer Matrices Method to verify the accuracy of the obtained results. The results are then compared with the exact solutions before purposely changing the parameter of mass. Both beams are modeled as discrete continuous systems with six-lumped-mass system. A single beam is broken down into a point mass and a massless beam which represent a single station and expressed in matrix form. The assembled matrices are used to determine the value of natural frequencies using numerical interpolation method corresponding to their mode number by manipulating some elements in the assembled matrix.

  • PDF

열차의 1차원 연결 해석 모델링 기법 연구 (A study on 1D modeling techniques for collision analysis of train coupling)

  • 김형준;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1203-1209
    • /
    • 2006
  • One dimensional collision analysis is often used to simulate a train-to-train coupling or collision accident. But there are various numerical modeling techniques utilized for dynamic models of rolling stocks such as a lumped-spring-mass model or a bar-mass model. In rolling stock industries, a lumped-spring-mass model is mainly applied without consideration of bogie attachments separately. In this case, a dynamic stiffness coefficient is introduced to compensate the overestimated car mass effects due to the linkage stiffness of bogies and seats. In this paper, the effects of dynamic stiffness coefficients and wheel-rail friction coefficients were studied by simulating a bar-mass model with bogie attachments separately.

  • PDF

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

원자로 노심으로 인한 노심지지동체의 동특성 변화에 관한 연구 (The Effect of the reactor core to the dynamic characteristic of core support barrel)

  • 강형선;반재삼;나상남;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.859-862
    • /
    • 2002
  • The Core Support Barrel (CSB) is a major component of Reactor Internals, and is designed to support and protect the Reactor Core. In this study, Reactor Core, Core Shroud and CSB were simplified to coaxial cylinders and then the offset of Reactor Core & Core Shroud to the dynamic characteristic of CSB was analyzed. For the beam modes, natural frequencies of the cantilevered cylinder are compared with those of the cantilevered beam. And it was found out that shear modulus must be used correctly to convert the shell model to the equivalent beam model. From the dynamic characteristics of the beam model, it was found out that natural frequencies are proportional to the length of Reactor Core & Core Shroud and inversely proportional to the mass. From the comparison with the dynamic characteristics of a beam model and a lumped-mass model it was found out that the size of lumped-mass must be determined considering both the length and the mass of Reactor Core & Core Shroud.

  • PDF