• Title/Summary/Keyword: Lumped Capacitance Method

Search Result 11, Processing Time 0.03 seconds

An Experimental Study on Quantitative Interpretation of Local Convective Heat Transfer for the Fin and Tube Heat Exchanger Using Lumped Capacitance Method (Lumped Capacitance 방법을 이용한 휜-관 열교환기의 정량적 국소 대류 열전달 해석을 위한 실험적 연구)

  • Kim, Ye-Yong;Kim, Gwi-Sun;Jeong, Gyu-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.205-215
    • /
    • 2001
  • An experimental study has been performed to investigate the heat transfer characteristics of fin and tube heat exchanger. The existing transient and steady methods are very difficult to apply for the measurements of heat transfer coefficients of a thin heat transfer model. In this study the lumped capacitance method was adopted. The heat transfer coefficients were measured by using the lumped capacitance method based on the liquid crystal thermography. The method is validated through impinging jet and flat plate flow experiments. The two experiments showed that the results of the lumped capacitance method with polycarbonate model showed very good agreements with those of the transient method with acryl model. The lumped capacitance method showed similar results regardless of the thickness of polycarbonate model. The method was also applied for the heat transfer coefficient measurements of a fin and tube heat exchanger. The quantitative heat transfer coefficients of the plate fin were successfully obtained. As the frontal velocity increased, the heat transfer coefficients were increased, but the color-band shape showed similar patterns regardless of frontal velocity.

Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method (등가물성 및 집중용량법을 이용한 리튬-이온 전지의 열해석)

  • Lee, Hee Won;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.775-780
    • /
    • 2013
  • In general, the battery module of an electric vehicle (EV) consists of lithium-ion cells. A lithium-ion battery is a secondary rechargeable battery, and it consists of numerous stacked plates that serve as electrodes and separators. Owing to these microstructural features, its numerical analysis is very expensive. Therefore, this study aims to present a simplified thermal analysis model using equivalent thermal properties, and we compare the experimental results with numerical results for 185.3Ah and 20Ah cells. Furthermore, we show the thermal behavior of cells without the finite element method (FEM) or finite volume method (FVM) by adopting the lumped capacitance method (LCM).

Novel Lumped Element Backward Directional Couplers Based on the Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기)

  • 박준석;송택영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1036-1043
    • /
    • 2003
  • In this paper, novel lumped equivalent circuits for a conventional parallel directional coupler are proposed. This novel equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3 dB and 10 dB lumped element directional couplers at the center frequency of 100 MHz and 2 GHz, respectively a chip type directional coupler has been designed with multilayer configurations by employing commercial EM simulator. Designed chip-type directional couplers have a 3 dB-coupling value at the center frequency of 2 GHz and fabricated lumped directional coupler on fr4 organic substrate has a 3 dB, 10 dB-coupling values at the center frequency of 100 MHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper. Furthermore, in order to adapt to multi-layer process such as Low Temperature Cofired Ceramic (LTCC), chip-type lumped element couplers have been designed by using this method.

Characterization of Microwave Active Circuits using the FDTD Method (FDTD를 이용한 마이크로파 능동 회로의 해석)

  • 황윤재;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.528-537
    • /
    • 2002
  • In this paper, the extended FDTD is used for the analysis of microwave circuits including active elements. Lumped elements such as R, L, C which are inserted into a microstrip line are analyzed with the FDTD lumped element modeling. Parasitic capacitance and inductance could be obtained using network modeling and so it is sure that FDTD lumped element modeling makes it possible to get more accurate data which include parasite components. Moreover, a balanced mixer using two diodes that are modeled by an extended FDTD is designed and the more exact characteristic of the mixer is acquired than in current circuit simulator.

Common Model EMI Prediction in Motor Drive System for Electric Vehicle Application

  • Yang, Yong-Ming;Peng, He-Meng;Wang, Quan-Di
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.205-215
    • /
    • 2015
  • Common mode (CM) conducted interference are predicted and compared with experiments in a motor drive system of Electric vehicles in this study. The prediction model considers each part as an equivalent circuit model which is represented by lumped parameters and proposes the parameter extraction method. For the modeling of the inverter, a concentrated and equivalent method is used to process synthetically the CM interference source and the stray capacitance. For the parameter extraction in the power line model, a computation method that combines analytical method and finite element method is used. The modeling of the motor is based on measured date of the impedance and vector fitting technique. It is shown that the parasitic currents and interference voltage in the system can be simulated in the different parts of the prediction model in the conducted frequency range (150 kHz-30 MHz). Experiments have successfully confirmed that the approach is effective.

Simulation Method for Thermal appropriate Desing of Compound Cylinder using Bondgraph Modeling (원통결합부의 열특성 최적설계를 위한 예측 시뮬레이션 방법)

  • 민승환;박기환;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.635-640
    • /
    • 1996
  • A thermo-elastic system in the production machine has highly nonlinear dynamic characteristics. In general, the finite element method is utilized for accurate analysis. However, it requires large computing time. Thus, thermo-elastic systems are usuallymodeled as electric and fluid system using lumped para,eter. In this paper. we propose the bondgraph model and transient simulation methodology of thermo-elastic system in consideration of various boundary and joint contact conditions. Consequently, the proposed method ensures a possibility of its on-line compensation about undesirable phenomena by using real time estimate process and electronic cooling device for thermal appropriate behavior. Thermo-elastic model consisting of bush and shaft including contact condition is presented.

  • PDF

Characteristics Analysis of Magnetizing Circuit and Fixture considering Temperature Characteristic (온도특성을 고려한 착자회로 및 요크의 특성 해석)

  • Baek, Soo-Hyun;Maeng, In-Jae;Kim, Pill-Soo;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.82-84
    • /
    • 1993
  • A method for simulating general characteristics and temperature characteristics of magnetizing fixture coil of the capacitor discharge impulse magnetizer-magnetizing fixture system using SPICE is presented. This method has been developed which can aid the design, understanding and inexpensive, time-saving of magnetizing circuit. As the detailed characteristics of magnetizing circuit can be obtained, the efficient design of the magnetizing circuit which produce desired magnet will be possible using our SPICE modeling. Especially, The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits tinder different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The temperature estimation method uses multi-lumped model with equivalent thermal resistance and thermal capacitance.

  • PDF

고속 CNC선반 이송계의 열변형 오차 해석

  • 윤원수;김수광;하재룡;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.263-268
    • /
    • 1997
  • Development of a high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of tool change time as well as repid travel time can enhance the productivity. However,the high speed feed drive system generates more heat in nature,which leads to thermal expansion that has adverse effects on the accuracy of machined part. The paper divides the feed drive system into the ball screw and guide way. For each part, the thermal behvior model is separtately developed to estimate the position error of the respective feed drive system that is caused by the thermal expansion. The modified lumped capacitance method is used to analyze the linear position error of the ball screw. The thermal deformation of guide way parts affects the straightness and angular error as well as linear position error. Finite element method is used to estimate the thermal behavior of these guide way parts. The effectiveness of the proposed models are verified through the experiments using laser interferometer.

Temperature Characteristics of Impulsed Magnetizing Fixture System (임펄스 착자요크 시스템의 온도특성에 관한 연구)

  • Baek, S.H.;Maeng, I.J.;Kim, Y.;Kim, P.S.;Ham, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1098-1100
    • /
    • 1993
  • In this paper, We found the thermal characterstic of impulsed magnetizing fixture system through the SPICE modeling and investigated the applied possibility in application aspects. As the detailed thermal characteristic of magnetizing fixure can be obtained, the efficient design of the magnetizing fixture which produce desired magnet will be possible using our thermal modeling. The purpose of this work is to compute the temperature increasing for different magnetizing conditions. The method uses multi-lumped model with equivalent thermal resistance and thermal capacitance. The model ing and experimental results are in close agreement.

  • PDF

Theoretical analysis on the cool storage system using clathrates (포접화합물을 이용한 축냉시스템에 대한 이론적 해석)

  • Chung, J.D.;Jung, I.S.;Yoo, H.;Lee, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.343-353
    • /
    • 1997
  • This paper presents a theoretical model for predicting transient behaviors during storage process of the cool storage system using the R141b clathrate. Introduction of the lumped capacitance method along with a brine reservoir having large thermal capacity yields a set of simplified energy equations. Based on the Arrhenius equation and the known experimental findings, the formation rate of clathrate for which the degree of subcooling is properly accounted is newly developed. An effective nondimensionalization of the model equations facilitates the closure of modeling as well as parametric study. Calculated results for a specific case not only simulate a typical pattern of temperautre variation in the tank successfully, but also agree reasonably well with available data. The effect of each characteristic parameter on the system performance is also investigated. It is revealed that the dominant among relevant parameters are the activation energy of reaction, the degree of subcoling and the initial mass fraction of refrigerant. Finally, the uncertainty associated with modeling of the shaft work variation appears to need further studies.

  • PDF