• 제목/요약/키워드: Luminous properties

검색결과 160건 처리시간 0.028초

7.5 W CMP-PLA 방열판을 적용한 LED 등기구 특성 (Characteristics of LED Lighting Device Using Heat Sinks of 7.5 W CMP-PLA)

  • 김영곤
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.920-923
    • /
    • 2013
  • In this paper, the characteristics of a carbon nanotube composite heat sink proposed to replace the advanced Al heat sinks for LED lighting devices were studied. Proposed CMP-PLA heat sink was made by mixing 20~70 wt% carbon nanotube, 20~70 wt% bio-degradable polymer of melt-blended PLA (poly lactic acid) and PBS (poly butylene succinate) and PLA nucleating agents composed of the mixture of soybean oil and biotites, at $150{\sim}220^{\circ}C$ with 1,000~1,500 rpm. Optical and electric characteristics of 7.5 W LED lighting devices using heat sinks with such prepared CMP-PLA were investigated. And, the properties of the heat, which was not released from the CMP-PLA type heat sinks, was also investigated. The color temperature of LED lighting devices using the CMP-PLA heat sinks was 5,956 K, which is x= 0.32 and y= 0.34 in the XY chromaticity, and the color rendering index was 75. The luminous flux and the luminous efficiency of LED lighting devices using the CMP-PLA heat sinks was 540.6 lm and 72.68 lm/W respectively. Measured initial temperature of the heat sinks was $27^{\circ}C$, and their temperature increased as time to be saturated at $52^{\circ}C$ after an hour.

고휘도 녹색 인광 OLED 제작에서 전자수송층 처리 (Treatments of Electron Transport Layer in the Fabrication of High Luminous Green Phosphoresent OLED)

  • 장지근;김원기;신상배;신현관
    • 반도체디스플레이기술학회지
    • /
    • 제7권3호
    • /
    • pp.5-9
    • /
    • 2008
  • New devices with structure of ITO/2TNATA/NPB/TCTA/CBP:7%Ir(ppy)$_3$/BCP/ETL/LiF/Al were proposed to develop high luminous green phosphorescent organic light emitting diodes and their electroluminescent properties were evaluated. The experimental devices were divided into two kinds according to the material ($Alq_3$ or SFC137) used as an electron transport layer (ETL). Luminous intensities of the devices using $Alq_3$ and SFC137 as electron transport layers were 27,500 cd/$m^2$ and 51,500 cd/$m^2$ at an applied voltage of 9V, respectively. The current efficiencies of both devices were similar as 12.6 cd/A under a luminance of 10,000 cd/$m^2$, while showed slower decay in the device with SFC137 as an ETL according to the further increase of luminance. Current density and luminance of the device with SFC137 as an electron transport layer were higher at the same voltage than those of the device with $Alq_3$ as an ETL.

  • PDF

선박용 LED Chamber Light의 열 및 광학 특성에 관한 연구 (A Study on the Thermal and Optical Properties of a LED Chamber Light for Vessels)

  • 김상현;이도엽;김우성;장낙원
    • 한국전기전자재료학회논문지
    • /
    • 제28권1호
    • /
    • pp.57-63
    • /
    • 2015
  • Recently, LED is widely used in the kinds of display devices or lighting. In this paper, we fabricated LED chamber light for naval vessels to replace to conventional chamber light using incandescent lamp. The LED package of chamber light was designed with luminous intensity of 5.5 cd, color temperature of $6,000{\pm}500K$, forward voltage of 3~3.2 V and input current of 60 mA. A LED module was composed of 36 LED packages and metal PCB. The VF and luminous intensity of LED package were getting down when temperature increased. The temperature of LED chamber light was measured by changing the number of LED package and applied current for one hour when an electric current flow. The heat transfer capability have been improved by using metal PCB. The power consumption of LED chamber light reduced by 86% compared to the conventional chamber light using incandescent lamp.

Electrical and Optical Characteristics in Organic Electroluminescent Devices with Different Materials for Electron Injection

  • Cho, Min-Jeong;Park, wan-Ji;Lim, Min-Su;Cheol-Hyun park;Jeon-Gu lee;Lim, Kee-Joe;Park, Soo-Gil;Kim, Hyun-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제11C권2호
    • /
    • pp.37-41
    • /
    • 2001
  • In this study, organic electroluminescent devices with the ITO/TPD/Alq$_3$/cathode structure, using various materials of Al, Mg:Ag, Al:Li, MgF$_2$/Al, and LiF/Al as cathodes, were fabricated. We investigated the electrical and optical properties of the devices as follow: current density-voltage(J-V), luminance-voltage(L-V) and luminous efficiency-voltage curves. The bilayer cathodes with LiF/Al and MgF$_2$/Al exhibited better device performance than the other cathodes. It is considered that the improved performance of the organic electroluminescent devices is attributable to the lowering of driving voltage caused by the enhanced electron injection. The alkaline-earth fluorides are desirable materials to improve the performance of the EL devices with the Al cathode, and high luminous efficiency was achieved.

형광체 두께와 방전공간의 변화에 따른 ac PDP의 어드레싱 속도와 전기광학적 특성에 관한 연구 (The Study of Addressing Time and Electrical and Optical Characteristics as Phosphor Thickness and Height of discharge Space in ac-PDP)

  • 허정은;김규섭;박정후;조정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1815-1817
    • /
    • 2000
  • Plasma display Panels(PDPs) are one of the leading technologies currently under development for large-area high-brightness flat panel displays. However, the luminance and luminous efficiency of at PDPs should be improved. Especially, one of the main factors affecting on the luminance and luminous efficiency of ac PDP may be the phosphor thickness and size of discharge space. In this study, we examined into addressing time, electrical and optical properties as a parameter of the phosphor thickness and the size of discharge space during the display period of ac PDP. It is found out that the optimum phosphor thickness was $50{\mu}m$ and height of discharge space was about $100{\mu}m$.

  • PDF

AT2018cow : Photometric Analysis of Fast-evolving, Luminous and Bluish Transient

  • Paek, Gregory SungHak;Im, Myungshin;Choi, Changsu;Lim, Gu;Kim, Sophia;Paek, Insu;Hwang, Sungyong;Kim, Taewoo
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.53.3-54
    • /
    • 2018
  • On June 16 AT2018cow (ATLAS 18qqn) was discovered as a bright and fast-evolving transient in nearby universe z ~ 0.01. It brightened by more than 4 mag within a day, and its light curve was decayed rapidly and has a high luminous peak which is more luminous than most of core-collapse supernova. It also overall showed a blue color in an unprecedented case of transients. There have been attempts to explain this behavior with existing models, but most of them have been insufficient except for one - tidal disruption by intermediate-mass black hole. We began to monitor this transient from about 4 days after the discovery until August 21 in the optical bands with 1m-class telescopes over the world. Here, we present a light curve of AT2018cow in the B, V, R and I bands, and analyze its photometric properties and compare to other transients and models.

  • PDF

교류 구동 방법에 의한 유기전계발광소자 발광 특성의 모델 (Model of Organic Light Emitting Device Emission Characteristics with Alternating Current Driving Method)

  • 서정현;주성후
    • 한국재료학회지
    • /
    • 제31권10호
    • /
    • pp.586-591
    • /
    • 2021
  • This paper proposes a mathematical model that can calculate the luminescence characteristics driven by alternating current (AC) power using the current-voltage-luminance (I-V-L) properties of organic light emitting devices (OLED) driven by direct current power. Fluorescent OLEDs are manufactured to verify the model, and I-V-L characteristics driven by DC and AC are measured. The current efficiency of DC driven OLED can be divided into three sections. Region 1 is a section where the recombination efficiency increases as the carrier reaches the emission layer in proportion to the increase of the DC voltage. Region 2 is a section in which the maximum luminous efficiency is stably maintained. Region 3 is a section where the luminous efficiency decreases due to excess carriers. Therefore, the fitting equation is derived by dividing the current density and luminance of the DC driven OLED into three regions, and the current density and luminance of the AC driven OLED are calculated from the fitting equation. As a result, the measured and calculated values of the AC driving I-V-L characteristics show deviations of 4.7% for current density, 2.9 % for luminance, and 1.9 % for luminous efficiency.

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • 강용수;박성희;이혜현;조영란;황종원;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF

진공 인라인 실장에 의해 제작된 플라즈마 디스플레이 패널의 전기적ㆍ광학적 특성 (Electrical and Optical Characteristics of Plasma Display Panel Fabricated by Vacuum In-line Sealing)

  • 박성현;이능헌
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.344-349
    • /
    • 2005
  • The optical and electrical characteristics of plasma display panel(PDP) using the vacuum in-line sealing technology compared with the conventional sealing process in this research. This PDP consisted of MgO protecting layer by e-beam evaporation and battier rib, transparent dielectric layer, dielectric layer, and electrodes by screen printer and then sealed off on Ne-Xe(4 %) 400 Torr and 430。C. The brightness and luminous efficiency were good as the base vacuum level was higher, and it was to check the advantage of high vacuum level sealing, one of the strong points of the vacuum in-line sealing process. However, the brightness and luminous efficiency was dropped sharply because of a crack on MgO protecting layer by the difference of the expansion and contraction stress on high temperature in the vacuum states between MgO and substrate. Fortunately, the crack was prevented by MgO was deposited on higher temperature than 300。C. Finally, the PDP, was fabricated by the vacuum in-line sealing process, resulted the lower brightness than processing only the thermal annealing treatment in the vacuum chamber, but the luminous efficiency was increased by the reducing power consumption with the decreasing luminous current. The vacuum in-line sealing technology was not to need the additional thermal annealing process and could reduce the fabrication process and bring the excellent optical and electrical properties without the crack of MgO protecting layer than the conventional sealing process.

High-power LED용 ceramic 형광체 plate 제조 및 발광 특성 분석 (Fabrication and analysis of luminous properties of ceramic phosphor plate for high-power LED)

  • 지은경;송예림;이민지;송영현;윤대호
    • 한국결정성장학회지
    • /
    • 제25권1호
    • /
    • pp.35-38
    • /
    • 2015
  • LED는 소비전력 절감, 사용수명 증가, 발광 파장 변화를 통한 다변적 적용이 가능하여 에너지 효율 증대의 대안으로 각광받고 있으며, 조명뿐만 아니라 디스플레이 백라이트, 차량용 헤드라이트 등 다양한 분야에 적용되고 있다. 현재 백색 LED를 구현하는 데에는 청색 LED와 황색 형광체를 혼합하는 방식이 주로 활용되며, 황색 형광체로는 YAG : $Ce^{3+}$가 많이 이용된다. 기존에는 형광체를 epoxy resin과 혼합하여 LED chip 위에 도포하여 경화시키는 패키징 방식을 주로 사용하였다. 하지만 페이스트 기반 패키징 방식은 열에 의한 형광체의 특성 저하와 효율 감소 문제를 일으킨다. 이러한 문제를 해결하기 위해 형광체 플레이트를 이용한 remote 방식이 이용되고 있지만, 플레이트 내부 전반사로 인한 광 효율 손실 또한 해결해야 할 문제이다. 본 연구에서는 플레이트 측면을 Ag로 코팅함으로써 플레이트 내부의 전반사에 의한 광 효율 손실을 해결하고자 하였다.