• Title/Summary/Keyword: Lumazine protein

Search Result 9, Processing Time 0.018 seconds

Generation and Expression of Amino-Terminal Domain of the Gene Coding for the Lumazine Protein from Photobacterium phosphoreum (발광 박테리아 Photobacterium phosphoreum의 Lumazine Protein을 코드 하는 유전자의 염기 서열 분석 및 발현)

  • Woo Young-Eun;Kim So-Young;Lee Chan-Yong
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.306-311
    • /
    • 2005
  • In this study, the amino-terminal half truncated lump and the whole lump genes from Photobacterium phosphoreum coding for the lumazine protein were cloned by polymerase chain reaction and expressed in Escherichia coli. To identifiy of the binding site of the ligand or substrate, the amino acid identities from the sequences of the lumazine protein, yellow fluorescent protein, and riboflavin synthase from different organisms were also compared and analyzed.

Spectrofluorometric Properties of N-Terminal Domain of Lumazine Protein from Photobacterium leiognathi

  • Kang, Kyoung-Suk;Kim, So-Young;Lee, Jung-Hwan;Nam, Ki-Seok;Lee, Eui Ho;Lee, Chan Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1673-1678
    • /
    • 2013
  • Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. To figure out the binding modes and the structure of the N-terminal domain of lumazine protein, the wild type of protein extending to amino acid 118 (N-LumP 118 Wt) and mutants of N-LumP 118 V41W, S48W, T50W, D64W, and A66W from Photobacterium leiognathi were purified. The biochemical properties of the wild type and mutants of N-LumP 118 proteins were analyzed by absorbance and fluorescence spectroscope. The peak of absorbance and fluorescence of lumazine ligand were shifted to longer wavelength on binding to N-LumPs. The observed absorbance value at 410 nm of lumazine bound to N-LumP 118 proteins indicate that one mole of N-LumP 118 proteins bind to one mole of ligand of lumazine. Fluorescence analysis show that the maximum peak of fluorescence of N-LumP S48W was shifted to the longest wavelength by binding with 6,7-dimethyl 8-ribityllumazine and was shown to the greatest quench effect by acrylamide among all tryptophan mutants.

Construction, Expression, and Purification of N-Terminal Variants of Lumazine Protein from Photobacterium leiognathi (발광세균 Photobacterium leiognathi의 돌연변이 아미노-말단 루마진 단백질들의 제조, 발현 및 정제)

  • Kang, Kyoung-Suk;Kim, So-Young;Choi, Ji-Sun;Kim, Young-Doo;Pokoo, Robert;Nam, Ki-Seok;Lee, Chan Yong
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • Lumazine protein is a fluorescent protein isolated from the bioluminescent bacteria of Photobacterium species. To generate minimal size of lumazine protein with possessing fluorescent characteristic, the gene coding for the wild type N-terminal domain of lumazine protein (N-LumP 118) containing amino acids up to 118 from Photobacterium leiognathi was produced. In addition, the genes coding for the variant proteins of N-LumP 118, replaced with one tryptophan amino acid (N-LumP 118 V41W, S48W, T50W, D64W, and A66W), were also constructed by Polymerase Chain Reaction and Site Directed Mutagenesis. These proteins were expressed in Escherichia coli by transformation with recombinant plasmids and purified by 6X-His tagging system. Spectroscopic studies have show that the purified proteins are capable of binding to the fluorescent ligand 6,7-dimethyl-8-ribityllumazine, resulted in showing of fluorescent characteristic with the minimal size of protein. From these studies, the mutant proteins containing single tryptophan amino acid residue, possessing its own intrinsic flouophore character at the different position, will be able to the use as a probe for further studies to deduce their three dimensional structure and the binding modes.

Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis

  • Kim, Ba Reun;Yoon, Jung Won;Choi, Hyukjun;Kim, Dasol;Kang, Sebyung;Kim, Jae Ho
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.175-180
    • /
    • 2022
  • Peptides are gaining substantial attention as therapeutics for human diseases. However, they have limitations such as low bioavailability and poor pharmacokinetics. Periostin, a matricellular protein, can stimulate the repair of ischemic tissues by promoting angiogenesis. We have previously reported that a novel angiogenic peptide (amino acids 142-151) is responsible for the pro-angiogenic activity of periostin. To improve the in vivo delivery efficiency of periostin peptide (PP), we used proteins self-assembled into a hollow cage-like structure as a drug delivery nanoplatform in the present study. The periostin peptide was genetically inserted into lumazine synthase (isolated from Aquifex aeolicus) consisting of 60 identical subunits with an icosahedral capsid architecture. The periostin peptide-bearing lumazine synthase protein cage nanoparticle with 60 periostin peptides multivalently displayed was expressed in Escherichia coli and purified to homogeneity. Next, we examined angiogenic activities of this periostin peptide-bearing lumazine synthase protein cage nanoparticle. AaLS-periostin peptide (AaLS-PP), but not AaLS, promoted migration, proliferation, and tube formation of human endothelial colony-forming cells in vitro. Intramuscular injection of PP and AaLS-PP increased blood perfusion and attenuated severe limb loss in the ischemic hindlimb. However, AaLS did not increase blood perfusion or alleviate tissue necrosis. Moreover, in vivo administration of AaLS-PP, but not AaLS, stimulated angiogenesis in the ischemic hindlimb. These results suggest that AaLS is a highly useful nanoplatform for delivering pro-angiogenic peptides such as PP.

The Functions of the Riboflavin Genes in the lux Operon from Photobacterium Species (Photobacterium Species의 lux 오페론에서 발견된 Riboflavin 생합성 유전자들의 기능)

  • 이찬용;임종호
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.173-179
    • /
    • 2002
  • The functions of riboflavin synthesis genes ( ribI,II,III and IV) found immediately downstream of luxG in the lux operon from Photobacterium species were identified using the biochemical and genetical analysis. The ribI-III gene codes for protein corresponding to that coded by the second (riboflavin synthase), third (3,4-dihydroxy 2-butanone 4-phosphate synthase/GTP cyclohydrolase II) and fourth (lumazine synthase) gene, respectively, of Bacillus subtilis rib operon with the respective gene procuct sharing 41-50% amino acid sequence identity. Unexpectedly, the sequence of the ribIV product of Photobacterium phosphoreum does not correspond in sequence to the protein encoded by the fifth rib gene of Bacillus subtilis. Instead the gene (ribIV) codes for a polypeptide similar in sequence to GTP cyclohydrolase II of Escherichia coli and the carboxy terminal domain of the third rib gene from Bacillus subtilis. Complementation of Escherichia coli riboflavin auxotrophs showed that the function of the gene products of ribII and ribIV are DHBP synthase and GTP cyclohydrolase II, respectively. In addition the experiment, showing that increase in thermal stability of riboflavin synthase coded by ribIon coexpression with ribIII, provided indirect evidence that the latter gene codes for lumazine synthase.

Ligand Binding Properties of the N-Terminal Domain of Riboflavin Synthase from Escherichia coli

  • Lee, Chan-Yong;Illarionov, Boris;Woo, Young-Eun;Kemter, Kristina;Kim, Ryu-Ryun;Eberhardt, Sabine;Cushman, Mark;Eisenreich, Wolfgang;Fischer, Markus;Bacher, Adelbert
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.239-246
    • /
    • 2007
  • Riboflavin synthase from Escherichia coli is a homotrimer of 23.4 kDa subunits and catalyzes the formation of one molecule each of riboflavin and 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrate, 6,7- dimethyl-8-ribityllumazine. Each subunit comprises two closely similar folding domains. Recombinant expression of the N-terminal domain is known to provide a $C_2$-symmetric homodimer. In this study, the binding properties of wild type as well as two mutated proteins of N-terminal domain of riboflavin synthase with various ligands were tested. The replacement of the amino acid residue A43, located in the second shell of riboflavin synthase active center, in the recombinant N-terminal domain dimer reduces the affinity for 6,7-dimethyl-8-ribityllumazine. The mutation of the amino acid residue C48 forming part of activity cavity of the enzyme causes significant $^{19}F$ NMR chemical shift modulation of trifluoromethyl derivatives of 6,7-dimethyl-8-ribityllumazine in complex with the protein, while substitution of A43 results in smaller chemical shift changes.

Protective efficacy of attenuated Salmonella Typhimurium strain expressing BLS, Omp19, PrpA, or SOD of Brucella abortus in goats

  • Leya, Mwense;Kim, Won Kyong;Ochirkhuyag, Enkhsaikhan;Yu, Eun-Chae;Kim, Young-Jee;Yeo, Yoonhwan;Yang, Myeon-Sik;Han, Sang-Seop;Lee, John Hwa;Tark, Dongseob;Hur, Jin;Kim, Bumseok
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.15.1-15.13
    • /
    • 2021
  • Background: Attenuated Salmonella strain can be used as a vector to transport immunogens to the host antigen-binding sites. Objectives: The study aimed to determine the protective efficacy of attenuated Salmonella strain expressing highly conserved Brucella immunogens in goats. Methods: Goats were vaccinated with Salmonella vector expressing individually lipoprotein outer-membrane protein 19 (Omp19), Brucella lumazine synthase (BLS), proline racemase subunit A (PrpA), Cu/Zn superoxide dismutase (SOD) at 5 × 109 CFU/mL and challenge of all groups was done at 6 weeks after vaccination. Results: Among these vaccines inoculated at 5 × 109 CFU/mL in 1 mL, Omp19 or SOD showed significantly higher serum immunoglobulin G titers at (2, 4, and 6) weeks post-vaccination, compared to the vector control. Interferon-γ production in response to individual antigens was significantly higher in SOD, Omp19, PrpA, and BLS individual groups, compared to that in the vector control (all p < 0.05). Brucella colonization rate at 8 weeks post-challenge showed that most vaccine-treated groups exhibited significantly increased protection by demonstrating reduced numbers of Brucella in tissues collected from vaccinated groups. Real-time polymerase chain reaction revealed that Brucella antigen expression levels were reduced in the spleen, kidney, and parotid lymph node of vaccinated goats, compared to the non-vaccinated goats. Besides, treatment with vaccine expressing individual antigens ameliorated brucellosis-related histopathological lesions. Conclusions: These results delineated that BLS, Omp19, PrpA, and SOD proteins achieved a definite level of protection, indicating that Salmonella Typhimurium successfully delivered Brucella antigens, and that individual vaccines could differentially elicit an antigen-specific immune response.

Spectrofluorometric Characteristics of the N-Terminal Domain of Riboflavin Synthase (아미노-말단 리보플라빈 생성효소 단백질의 형광 특성)

  • Kim, Ryu-Ryun;Yi, Jeong-Hwan;Nam, Ki-Seok;Ko, Kyung-Won;Lee, Chan-Yong
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.14-21
    • /
    • 2011
  • Riboflavin synthase catalyzes the formation of one molecule of each riboflavin and 5-amino-6-ribitylamino-2,4-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrates, 6,7-dimetyl-8-ribityllumazine. The most remarkable feature is the sequence similarity between the N-terminal half (1-97) and the C-terminal half domain (99-213). To investigate the structure and fluorescent characteristics of the N-terminal half of riboflavin synthase (N-RS) in Escherichia coli, more than 10 mutant genes coding for the mutated N-terminal domain of riboflavin synthase were generated by polymerase chain reaction. The genes coding for the proteins were inserted into pQE vector designed for easy purification of protein by 6X-His tagging system, expressed, and the proteins were purified. Almost all mutated N-terminal domain of riboflavin synthases bind to 6,7-dimethyl-8-ribityllumazine and riboflavin as fluorescent ligands. However, N-RS C47D and N-RS ET66,67DQ mutant proteins show colorless, indicating that fluorescent ligands were dissociated during purification. In addition, most mutated proteins show low fluorescent intensity comparing to N-RS wild type, whereas N-RS C48S posses stronger fluorescent intensity than that of wild type protein. Based on this result, N-RS C48S can be used as the tool for high throughput screening system for searching for the compound with inhibitory effect for the riboflavin synthase.