Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.4.137

Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis  

Kim, Ba Reun (Department of Physiology, School of Medicine, Pusan National University)
Yoon, Jung Won (Department of Physiology, School of Medicine, Pusan National University)
Choi, Hyukjun (Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST))
Kim, Dasol (Department of Physiology, School of Medicine, Pusan National University)
Kang, Sebyung (Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST))
Kim, Jae Ho (Department of Physiology, School of Medicine, Pusan National University)
Publication Information
BMB Reports / v.55, no.4, 2022 , pp. 175-180 More about this Journal
Abstract
Peptides are gaining substantial attention as therapeutics for human diseases. However, they have limitations such as low bioavailability and poor pharmacokinetics. Periostin, a matricellular protein, can stimulate the repair of ischemic tissues by promoting angiogenesis. We have previously reported that a novel angiogenic peptide (amino acids 142-151) is responsible for the pro-angiogenic activity of periostin. To improve the in vivo delivery efficiency of periostin peptide (PP), we used proteins self-assembled into a hollow cage-like structure as a drug delivery nanoplatform in the present study. The periostin peptide was genetically inserted into lumazine synthase (isolated from Aquifex aeolicus) consisting of 60 identical subunits with an icosahedral capsid architecture. The periostin peptide-bearing lumazine synthase protein cage nanoparticle with 60 periostin peptides multivalently displayed was expressed in Escherichia coli and purified to homogeneity. Next, we examined angiogenic activities of this periostin peptide-bearing lumazine synthase protein cage nanoparticle. AaLS-periostin peptide (AaLS-PP), but not AaLS, promoted migration, proliferation, and tube formation of human endothelial colony-forming cells in vitro. Intramuscular injection of PP and AaLS-PP increased blood perfusion and attenuated severe limb loss in the ischemic hindlimb. However, AaLS did not increase blood perfusion or alleviate tissue necrosis. Moreover, in vivo administration of AaLS-PP, but not AaLS, stimulated angiogenesis in the ischemic hindlimb. These results suggest that AaLS is a highly useful nanoplatform for delivering pro-angiogenic peptides such as PP.
Keywords
Angiogenesis; Angiogenic peptide; Periostin; Peripheral artery disease; Protein cage nanoparticle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kumar VA, Liu Q, Wickremasinghe NC et al (2016) Treatment of hind limb ischemia using angiogenic peptide nanofibers. Biomaterials 98, 113-119   DOI
2 Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z and Kumar VA (2018) Angiogenic self-assembling peptide scaffolds for functional tissue regeneration. Biomacromolecules 19, 3597-3611   DOI
3 Licht T, Tsirulnikov L, Reuveni H, Yarnitzky T and Ben-Sasson SA (2003) Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood 102, 2099-2107   DOI
4 Craik DJ, Fairlie DP, Liras S and Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81, 136-147   DOI
5 Bhaskar S and Lim S (2017) Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater 9, e371   DOI
6 Zhang X, Meining W, Fischer M, Bacher A and Ladenstein R (2001) X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 A resolution: determinants of thermostability revealed from structural comparisons. J Mol Biol 306, 1099-1114   DOI
7 Ra JS, Shin HH, Kang S and Do Y (2014) Lumazine synthase protein cage nanoparticles as antigen delivery nanoplatforms for dendritic cell-based vaccine development. Clin Exp Vaccine Res 3, 227-234   DOI
8 Choi H, Choi B, Kim GJ et al (2018) Fabrication of nanoreaction clusters with dual-functionalized protein cage nanobuilding blocks. Small 14, e1801488
9 Kim H, Kang YJ, Min J, Choi H and Kang S (2016) Development of an antibody-binding modular nanoplatform for antibody-guided targeted cell imaging and delivery. RSC Advances 6, 19208-19213   DOI
10 Kang HJ, Kang YJ, Lee YM, Shin HH, Chung SJ and Kang S (2012) Developing an antibody-binding protein cage as a molecular recognition drug modular nanoplatform. Biomaterials 33, 5423-5430   DOI
11 Takeshita S, Kikuno R, Tezuka K and Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294 ( Pt 1), 271-278   DOI
12 Kim BR, Kwon YW, Park GT et al (2017) Identification of a novel angiogenic peptide from periostin. PLoS One 12, e0187464   DOI
13 Horiuchi K, Amizuka N, Takeshita S et al (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14, 1239-1249   DOI
14 Zhang Z, Nie F, Chen X et al (2015) Upregulated periostin promotes angiogenesis in keloids through activation of the ERK 1/2 and focal adhesion kinase pathways, as well as the upregulated expression of VEGF and angiopoietin1. Mol Med Rep 11, 857-864   DOI
15 Gonzalez-Gonzalez L and Alonso J (2018) Periostin: a matricellular protein with multiple functions in cancer development and progression. Front Oncol 8, 225   DOI
16 Frackenpohl J, Arvidsson PI, Schreiber JV and Seebach D (2001) The outstanding biological stability of beta- and gamma-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. Chembiochem 2, 445-455   DOI
17 Min J, Kim S, Lee J and Kang S (2014) Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. Rsc Advances 4, 48596-48600   DOI
18 Min J, Kim S, Lee J and Kang S (2014) Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. RSC Adv 4, 48596-48600   DOI
19 Vlieghe P, Lisowski V, Martinez J and Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15, 40-56   DOI
20 Azuma Y, Edwardson TGW and Hilvert D (2018) Tailoring lumazine synthase assemblies for bionanotechnology. Chem Soc Rev 47, 3543-3557   DOI
21 Rother M, Nussbaumer MG, Renggli K and Bruns N (2016) Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 45, 6213-6249   DOI
22 Kim BR, Jang IH, Shin SH et al (2014) Therapeutic angiogenesis in a murine model of limb ischemia by recombinant periostin and its fasciclin I domain. Biochim Biophys Acta 1842, 1324-1332   DOI
23 Heo SC, Kwon YW, Jang IH et al (2014) WKYMVm-induced activation of formyl peptide receptor 2 stimulates ischemic neovasculogenesis by promoting homing of endothelial colony-forming cells. Stem Cells 32, 779-790   DOI
24 Strohl WR (2015) Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 29, 215-239   DOI
25 Kim H, Jin S, Choi H et al (2021) Target-switchable Gd(III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T-1 contrast agents for high-field MRI. J Control Release 335, 269-280   DOI
26 Kwon YW, Lee SJ, Heo SC et al (2019) Role of CXCR2 in the Ac-PGP-induced mobilization of circulating angiogenic cells and its therapeutic implications. Stem Cells Transl Med 8, 236-246   DOI
27 Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY and Chang DD (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(v)/beta(3) and alpha(v)beta(5) integrins and promotes cell motility. Cancer Res 62, 5358-5364
28 Schenk S, Schoenhals GJ, de Souza G and Mann M (2008) A high confidence, manually validated human blood plasma protein reference set. BMC Med Genomics 1, 41   DOI
29 Rubanyi GM (2000) Angiogenesis in health and disease : basic mechanisms and clinical applications, Dekker, New York
30 Tongers J, Roncalli JG and Losordo DW (2008) Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 118, 9-16   DOI