• Title/Summary/Keyword: Luciferase

Search Result 611, Processing Time 0.025 seconds

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients

  • Min, Jae-Woong;Koh, Youngil;Kim, Dae-Yoon;Kim, Hyung-Lae;Han, Jeong A;Jung, Yu-Jin;Yoon, Sung-Soo;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.465-475
    • /
    • 2018
  • The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.

Expression and DNA Sequence of the Gene Coding for the lux-specific Fatty Acyl-CoA Reductase from photobacterium phosphoreum

  • Lee, Chan-Yong;Edward A. Meighen
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.80-87
    • /
    • 2000
  • The nucleotide sequence of the luxC gene coding for lux-specific fatty acyl-CoA reductase and the upstream DNA (325bp)of the structural gene from bioluminescent bacterium, Photobacterium phosphoreum, has been deternubed. An open reading frame extending for more than 20 codons in 325 bp DNA upstream of luxC was not present in both directions. The lux gene can be translated into a polypeptide of 54 kDa and the amino acid sequences of lux specific reductases of P. phosphoreum shares 80, 65, 58, and 62% identity with those of the Photobacterium leiognathi, Vibrio fischeri, Vibrio harveyi, and Xehnorhabdus luminescenens reductases, respectively. Analyses of codon usage, showing that a high frequency (2.3%) of the isoleucine codon, AUA, in the luxC gene compared to that found in Escherichia coli genes (0.2%) and its absence in the luxA and B genes, suggested that the AUA codon may play a modulator role in the expression of lux gene in E. coli. The structural genes (luxC, D, A, B, E) of the P. phosphoreum coding for luciferase (${\alpha}$,${\beta}$) and fatty acid reductase (r, s, t) polypeptides can be expressed exclusively in E. coli under the T7 phage RNA polymerase/promoter system and identificationof the [35S]methionine labelled polypeptide products. The degree of expression of lux genes in analyses of codon usage. High expression of the luxC gene could only be accomplished in a mutant E. coli 43R. Even in crude extracts, the acylated acyl-CoA reductase intermediate as well as acyl-CoA reductrase activities could be readily detected.

  • PDF

Establishment of In vitro Detection System for iNOS Expression and the Verification of Suppressive Effect by Pine Needle Extract (iNOS 발현 검출을 위한 in vitro 시스템의 확립 및 적송잎 추출물에 의한 저해효과 검증)

  • Kim, Nam-Young;Jang, Hye-Ji;Lee, Dong-Geun;Jang, Min-Kyung;Lee, Seung-Woo;Jeon, Myong-Je;Kim, Mi-Hyang;Kim, Sung-Gu;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.172-176
    • /
    • 2011
  • This study was aimed to verify suppressive effect of pine-needle extract on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression. In order to evaluate suppressive effect on iNOS expression, RAW 264.7 cells were stably transfected using an iNOS promoterluciferase reporter plasmid yielding RAW 264.7/pGL2-NeomiNOS_ pro11 cells. Established in vitro detection system revealed to diminish LPS-induced iNOS expression by 0.1~500 ${\mu}g/mL$ of saponin at the concentration-dependant manner. Pine needle extract also diminished LPS-induced iNOS expression to 92 and 88% at 500 and 50 ${\mu}g/mL$, respectively. These results suggest that the in vitro detection system developed here could be useful for the verification of suppressive materials on iNOS expression and pine needle extract could be used for the development of functional foods.

CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation

  • Kim, Hyo-Jeong;Zheng, Min;Kim, Seul-Ki;Cho, Jung-Jee;Shin, Chang-Ho;Joe, Yeon-Soo;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.376-382
    • /
    • 2011
  • Background: Carbon monoxide (CO) is a cytoprotective and homeostatic molecule with important signaling capabilities in physiological and pathophysiological situations. CO protects cells/tissues from damage by free radicals or oxidative stress. NAD(P)H:quinone oxidoreductase (NQO1) is a highly inducible enzyme that is regulated by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which is central to efficient detoxification of reactive metabolites and reactive oxygen species (ROS). Methods: We generated NQO1 promoter construct. HepG2 cells were treated with CO Releasing Molecules-2 (CORM-2) or CO gas and the gene expressions were measured by RT-PCR, immunoblot, and luciferase assays. Results: CO induced expression of NQO1 in human hepatocarcinoma cell lines by activation of Nrf2. Exposure of HepG2 cells to CO resulted in significant induction of NQO1 in dose- and time-dependent manners. Analysis of the NQO1 promoter indicated that an antioxidant responsible element (ARE)-containing region was critical for the CO-induced Nrf2-dependent increase of NQO1 gene expression in HepG2 cells. Conclusion: Our results suggest that CO-induced Nrf2 increases the expression of NQO1 which is well known to detoxify reactive metabolites and ROS.

Functional Modification of a Specific RNA with Targeted Trans-Splicing

  • Park, Young-Hee;Kim, Sung-Chun;Kwon, Byung-Su;Jung, Heung-Su;Kim, Kuchan;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • The self-splicing group I intron from Tetrahymena thermophila has been demonstrated to perform splicing reaction with its substrate RNA in the trans configuration. In this study, we explored the potential use of the trans-splicing group I ribozymes to replace a specific RNA with a new RNA that exerts any new function we want to introduce. We have chosen thymidine phosphorylase (TP) RNA as a target RNA that is known as a valid cancer prognostic factor. Cancer-specific expression of TP RNA was first evaluated with RT-PCR analysis of RNA from patients with gastric cancer. We determined next which regions of the TP RNA are accessible to ribozymes by employing an RNA mapping strategy, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. A specific ribozyme recognizing the most accessible sequence in the TP RNA with firefly luciferase transcript as a 3' exon was then developed. The specific trans-splicing ribozyme transferred an intended 3' exon tag sequence onto the targeted TP transcripts, resulting in a more than two fold induction of the reporter activity in the presence of TP RNA in mammalian cells, compared to the absence of the target RNA. These results suggest that the Tetrahymena ribozyme can be a potent anti-cancer agent to modify TP RNAs in tumors with a new RNA harboring anti-cancer activity.

Lactobacillus acidophilus Strain Suppresses the Transcription of Proinflammatory-Related Factors in Human HT-29 Cells

  • Chen, Kun;Liang, Nailong;Luo, Xuegang;Zhang, Tong-Cun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.64-68
    • /
    • 2013
  • Previous studies have shown that lactic acid bacteria can inhibit inflammatory responses, but the mechanisms are very little known. In this study, transaction and expression of three proinflammatory factors, iNOS, PTGS-2, and IL8, which are closely related to the inflammatory response, were investigated by luciferase reporter assay and RTPCR in HT-29 cells treated by Lactobacillus acidophilus. The results showed that the live L. acidophilus sharply down-regulated the transcription of these three genes. Because there was a NF-${\kappa}B$ binding site located at -265 bp, -225 bp, and -95 bp upstream of the iNOS, PTGS-2, and IL8 promoters, respectively, we further addressed the effects of NF-${\kappa}B$ on transaction of the three promoters by cotransfection. As was expected, NF-${\kappa}Bs$ remarkably upregulated the activity of the reporter gene and, no effect of NF-${\kappa}B$s on IL-8 promoter transaction was found after NF-${\kappa}B$ binding site mutation of the IL8 promoter in HT-29 cells. In conclusion, the live L. acidophilus decreased the transcriptional activity of NF-${\kappa}B$ and, in turn, inhibited the transaction of NF-${\kappa}B$ on the three proinflammatory factors mentioned above.

Effects of Medicinal herb Extracts and their Components on Steatogenic Hepatotoxicity in Sk-hep1 Cells

  • Choi, You-Jin;Yoon, Yu-Jin;Choi, Ho-Sung;Park, So-Ra;Oh, Se-Hee;Jeong, Se-Mi;Suh, Hyo-Ryung;Lee, Byung-Hoon
    • Toxicological Research
    • /
    • v.27 no.4
    • /
    • pp.211-216
    • /
    • 2011
  • Herbal medicines are widely used in many countries for the treatment of many diseases. Although the use of herb extracts as alternative medicine is growing, their toxicological properties have not been thoroughly investigated. In this study, we have investigated the effects of water and ethanol extracts of 18 herbs on the hepatic lipid metabolism and steatogenic hepatotoxicity. Ethanol extracts of Cirsium japonicum, Carthamus tinctorius, Rehmanniae glutinosa (preparata), Polygala tenuifolia, Foeniculum vulgare, Polygonum multiflorum, and Acorus gramineus and water extracts of Polygonum multiflorum and Rehmanniae glutinosa induced lipid accumulation in Sk-hep1 human hepatoma cells as determined by Nile red staining. These extracts increased the luciferase activity of sterol regulatory element (SRE) and decreased that of peroxisome proliferator response element (PPRE), indicating the possibilities of enhanced fatty acid synthesis and decreased fatty acid oxidation. To identify the components responsible for the fat accumulation, we tested 50 chemicals isolated from the nine herbs. Apigenin, luteolin, pectolinarin and lupeol from Cirsium japonicum, 8-methoxypsoralen and umbelliferone from Foeniculum vulgare and pomonic acid and jiocerebroside from Rehmanniae glutinosa significantly increased the accumulation of lipid droplets. These results suggest that ethanol extracts of Cirsium japonicum, Carthamus tinctorius, Rehmanniae glutinosa (preparata), Polygala tenuifolia, Foeniculum vulgare, Polygonum multiflorum, and Acorus gramineus and water extracts of Polygonum multiflorum and Rehmanniae glutinosa can cause fatty liver disease by decreasing ${\beta}$-oxidation of fatty acid and increasing lipogenesis.

Resveratrol Up-regulates Cysteine-rich Angiogenic Inducer 61 (CYR61) in Human Colorectal Cancer Cells (Resveratrol에 의한 cysteine-rich angiongenic inducer 61 (CYR61) 유전자의 과대발현 조절)

  • Kwak, Eun-Hee;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.207-212
    • /
    • 2013
  • In this paper, we investigated whether resveratrol could induce the expression of cysteine-rich angiogenic inducer 61 (CYR61), which is a member of the CCN families. We showed that resveratrol up-regulated CYR61 protein expression in three different human colorectal cancer cell lines. In addition, resveratrol induced CYR61 protein expression in a dose- and time-dependent manner in a HCT116 cell line. To investigate the relationship between various biological activities of resveratrol and CYR61 expression, HCT116 cells were incubated with several NSAIDs, antioxidants, or resveratrol. Interestingly, resveratrol only induced CYR61 protein expression. The expression of CYR61 was not related to the presence of p53. A promoter assay revealed that the 786-bp promoter region (-732/+54) contains a regulatory region and that indole-3-carbinol and 6-gingerol could not induce CYR61 expression. In conclusion, our results indicate up-regulation of CYR61 is extremely resveratrol specific. The results can help to shed light on the unique biological function of resveratrol.

FXRα Down-Regulates LXRα Signaling at the CETP Promoter via a Common Element

  • Park, Sung-Soo;Choi, Hojung;Kim, Seung-Jin;Kim, Ok Jin;Chae, Kwon-Seok;Kim, Eungseok
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.409-414
    • /
    • 2008
  • The cholesteryl ester transfer protein (CETP), a key player in cholesterol metabolism, has been shown to promote the transfer of triglycerides from very low density lipoprotein (VLDL) and low density lipoprotein (LDL) to high density lipoprotein (HDL) in exchange for cholesterol ester. Here we demonstrate that farnesoid X receptor ${\alpha}$ ($FXR{\alpha}$; NR1H4) down-regulates CETP expression in HepG2 cells. A $FXR{\alpha}$ ligand, chenodeoxycholic acid (CDCA), suppressed basal mRNA levels of the CETP gene in HepG2 cells in a dose-dependent manner. Using gel shift and chromatin immunoprecipitation (ChIP) assays, we found that $FXR{\alpha}$ could bind to the liver X receptor ${\alpha}$ ( $LXR{\alpha}$; NR1H3) binding site (LXRE; DR4RE) located within the CETP 5' promoter region. $FXR{\alpha}$ suppressed $LXR{\alpha}$-induced DR4RE-luciferase activity and this effect was mediated by a binding competition between $FXR{\alpha}$ and $LXR{\alpha}$ for DR4RE. Furthermore, the addition of CDCA together with a $LXR{\alpha}$ ligand, GW3965, to HepG2 cells was shown to substantially decrease mRNA levels of hepatic CETP gene, which is typically induced by GW3965. Together, our data demonstrate that $FXR{\alpha}$ down-regulates CETP gene expression via binding to the DR4RE sequence within the CETP 5' promoter and this $FXR{\alpha}$ binding is essential for $FXR{\alpha}$ inhibition of $LXR{\alpha}$-induced CETP expression.