• Title/Summary/Keyword: Lubrication Viscosity

Search Result 152, Processing Time 0.031 seconds

EFFECT OF BASE OILS CHARACTERISTICS ON ATF PERFORMANCE

  • Moon, Woo-Sik;Yang, Si-Won
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.191-197
    • /
    • 2001
  • Performance requirements for automatic transmission fluids have been changing to reflect the design changes of automatic transmission. The major purpose for these design changes is to improve fuel economy and drivability. The use of special base oils like API Group III and IV base oils has increased in order to formulate high performance ATF. In this study. the effect of base oils characteristics on ATF performance is investigated, mainly regarding differences in frictional characteristics with deterioration. Moreover, low-temperature fluidity. oxidation stability. and seal compatibility are also compared for four different ATFs. From the investigation, it was found that the use of Group III and IV base oils in ATF has several benefits in low temperature viscosity. oxidation stability and SAE No.2 friction characteristics.

  • PDF

무한 소폭 전기유변 스퀴즈 필름 댐퍼의 해석

  • 정시영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1994.06b
    • /
    • pp.19-29
    • /
    • 1994
  • Since Winslow (1) has reported an electro - theological (ER) effect which features remarkable and reversible changes in the properties of the fluid due to an imposed external electric field, numerous applications of ER fluids in mechanical devices, such as clutches, control valves, active dampers, and etc. have been proposed to improye dramatical ly their performances (2,3). When the external electric field is imposed to the ER fluid, it behaves as a Bingham fluid, displaying a field dependent yield shear stress which is widely variable. Without the electric field, the ER fluid has a reversible and constant viscosity so that it flows as a Newtonian fluid. Another salient feature of the ER fluid is that the time required for the variation is very short (< 0.001 sec) (4-6). These attractive.characteristics of the ER fluid provide the possibility of the appearance of new engineering technology , for instance, an active vibration control system. Recently, the application of the ER fluid to rotor-bearing systems has been also initiated.

  • PDF

Rheological Modeling of Nanoparticles in a Suspension with Shear Flow (전단 흐름을 갖는 서스펜션 내부 나노 입자의 유변학적 특성 연구)

  • Kim, Gu;Fukai, Jun;Hironaka, Shuji
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.445-452
    • /
    • 2019
  • Shear thickening is an intriguing phenomenon in the fields of chemical engineering and rheology because it originates from complex situations with experimental and numerical measurements. This paper presents results from the numerical modeling of the particle-fluid dynamics of a two-dimensional mixture of colloidal particles immersed in a fluid. Our results reveal the characteristic particle behavior with an application of a shear force to the upper part of the fluid domain. By combining the lattice Boltzmann and discrete element methods with the calculation of the lubrication forces when particles approach or recede from each other, this study aims to reveal the behavior of the suspension, specifically shear thickening. The results show that the calculated suspension viscosity is in good agreement with the experimental results. Results describing the particle deviation, diffusivity, concentration, and contact numbers are also demonstrated.

INFLUENCE OF GEAR OIL FORMULATION ON OIL TEMPERATURE

  • Wienecke, D.;Bartz, W.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.311-312
    • /
    • 2002
  • Friction losses in complex tribo-technical system are revealed primarily through their effect on the operating temperature level. In order to assess the influence of the oil formulation on the temperature level comprehensive tests were run in a model test apparatus consisting of a special adapter for the 4-ball test rig. More than ten with different formulations (different base oils, additive packages and viscosity modifiers) were tested, The resulting temperature levels varied by nearly 25 %. The objective of this model testing is to assess the influence of the oil formulation on the operating temperature of vehicle manual transmission. The correlation to the real tribotechnical system was confirmed by a VW Polo transmission test.

  • PDF

Electrorheological Properties of ER Fluid under High Shear Flow (고속 전단유동에서 ER유체의 전기유변 특성)

  • Kim Y. C.;Kim K. W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.229-234
    • /
    • 2003
  • As electrorheological fluid(ER fluid) has a characteristic that apparent viscosity varies when electric field applied, so rheological characteristic(yield stress & viscosity) changes in proportion to the electric field applied and the response time is very short within a few miliseconds . In case of using ER fluid for journal bearing as lubricant, it is estimated that it's possible to realize very effective journal bearing system that is not complicate and has a very quick response time. It is necessary to examine the influence of rheological characteristic that varies with electric field applied on bearing characteristic to apply ER fluid to journal bearing, however there are few studies for about that. As for the journal bearing, it comes under high shear flow mode that has shear rate range of $10^3\~10^4s^{-1}$ because rotational speed is very high and clearance is small. But most of the studies for about ER fluid issued until now is about the range of $10\~10^2s^{-1}$. So, there are a lot of difficulties to understand the characteristic offish shear flow mode and furthermore it is restricted to make an experiment for about the characteristic of ER fluid because of the limitation of experimental equipment. The equipment was prepared to make an experiment lot high shear flow mode that has the range of $10^3\~10^4s^{-1}$ using ER fluid that is composed of silicon oil with dispersed particle of starch. Using the above system, the fluid characteristic of ER fluid was studied.

  • PDF

The Optimum Selection and Drawing Output Program Development of Shell & Tube Type Oil Cooler (원통다관 형 오일냉각기의 최적선정 및 도면 출력 프로그램 개발)

  • Lee, Y.B.;Ko, J.M.;Kim, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2609-2614
    • /
    • 2007
  • Shell & Tube type Oil Cooler is widely used for hydraulic presses, die casting machines, generation equipments, machine tools and construction heavy machinery. Temperature of oil in the hydraulic system changes viscosity and thickness of oil film. They have a bad effect to performance and lubrication of hydraulic machinery, so it is important to know exactly the heat exchanging efficiency of oil cooler for controlling oil temperature. But most Korean manufacturers do not have test equipment for oil cooler, so they cannot carry out the efficiency test of oil cooler and it is impossible to verify its performance. This paper includes information of construction of necessary utilities for oil cooler test and design and manufacture of test equipment. One can select the optimum product by obtaining performance data through tests of various kinds of oil coolers. And also the paper developed a program which can be easily used for design of 2D and 3D drawings of oil cooler.

  • PDF

The Effect on the Friction Forces of Big-End Bearing by the Aerated Lubricant

  • Park, Young-Hwan;Jang, Si-Youl
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.425-426
    • /
    • 2002
  • Lineal and angular movements of many engine components make the lubricant absorb air and the aerated lubricant greatly influences the clearance performance of contacting behaviors of engine components such as big-end bearing, cam and tappet, etc. This study investigates the behaviors of aerated lubricant in the gap between con-rod bearing and proceeding which is one of the most frictional energy consuming components in the engine. Our assumption for the analysis of aerated lubricant film is that the film formation is influenced by the two major factors. One is the density characteristics of the lubricant due to the volume change of lubricant by absorbing the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble in the lubricant. In our investigation, it is found that these two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Frictional forces are also influenced by the aerated bubble size and density, which eventually enlarge the shear resistance due the surface tension, Modified Reynolds' equation is developed for the computation of fluid film pressure with the effects of aeration ratio under the dynamic loading condition. From the calculated load capacity by solving modified Reynolds' equation, proceeding locus is computed with Mobility method at each time step.

  • PDF

A Study on the Change of Physical Properties of Engine Oil after Vehicle Driving (차량 운행에 따른 엔진오일 물성변화 연구)

  • Lim, Young-Kwan;Ham, Song-Yi;Lee, Joung-Min;Jeong, Choong-Sub
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • The engine oil is an oil used for lubrication of various internal combustion engines. Recently, the vehicle and engine oil manufacture usually guarantee for oil change over 15000~20000 km mileage, but the most of driver usually change engine oil every 5000 km driving in Korea. In this case, it is possible to cause environmental contamination by used engine oil and increase the cost of driving by frequently oil change. In this study, we investigate the various physical properties such as flash point, pour point, kinematic viscosity, cold cranking simulator, total acid number, and four-ball test for fresh engine oil and used engine oil after vehicle driving (5000 km, 10000 km). The test result showed that the total acid number and wear scar by four-ball test of used engine oil had increased than fresh engine oil, but 2 kind of used oil (5000 km and 10000 km) had similar physical properties.

A Study on the Minimum Oil Film Thickness of Connecting-rod Bearing in Engine (엔진 연결봉 베어링의 최소 유막 두께에 관한 연구)

  • Choi, Jae-Kwon;Heo, Gon;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.04a
    • /
    • pp.39-53
    • /
    • 1993
  • The minimum oil film thickness(MOFT) in the connecting-rod bering of a 1.5 liter, L-4, gasoline engine is measured up to 5500 rpm and calculated to study the dynamically loaded engine bearing. Short bearing approximation and Mobility method are used for theoretical analysis of oil film charactrtistics. And cylinder pressure, crank-pin surface temperature and bearing tenp ture are measured as the input data of theoretical analysis. The MOFT are measured by the total capacitance method(TCM). To improve the reliability of the test results, a reasonable detmuuination method of bearing clearance is introduced and used, and the effects of cavitation and aeration on the test results are neglected. The crankshaft is grounded by means of a slip ring. A scissor type linkage system was developed to measure the MOFT and bearing temperature. The effects of engine speed, load and oil viscosity on the measured and calculated minimum oil film thicknesses are investigated at 1500 to 5500 rpm. From the comparison between the measured and calculated MOFT, it is found that a qualitative similarity exists between them, but in all cases, the measured MOFT are smaller than those calculated.

  • PDF

Infinitesimal Fluid Injection Control System by using an Orifice and a Directional Control Valve (오리피스와 방향제어밸브를 이용한 미세유량 분사제어시스템)

  • Jeong, Eun-Seok;Oh, In-Ho;Lee, Ill-Yeong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • This study suggests a precision flow control system that enables fluid injection of a few grams at a time in a few ms time duration. The fluid injection system suggested here consists of a high pressure fluid pump, a 3 way 3 position directional control valve, an injector and an orifice. The orifice is located between the directional control valve and the injector. By supplying current signal to the directional control valve, the prescribed small amount of fluid can be supplied to a plant through the injector. The control robustness of the suggested system against the disturbances like the pressure change in a plant and the viscosity variation of the injected fluid is secured easily by using an orifice with very small inside diameter and setting the supply pressure with comparatively high value. The control performances of the suggested system are verified by numerical simulations and experiments. The outcomes of this research could be applied to the common rail injection control of lubrication oil for large size marine diesel engines, and other industrial plants.

  • PDF