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I. INTRODUCTION

Since VWinslow has

(1)

rheological

reported an
electro - (ER) effect which
features remarkable and reversible changes
in the properties of t'he fluid due to an
imposed external electric field, numerous
applications of ER fluids in mechanical
devices, such as clutches, control valve;,
active dampers, and etc. have been proposed
to impro;/e dramatically their performances
(2,3).

When the external electric field is
imposed to the ER fluid,

Bingham

it behaves as a

fluid, displaying a field -

dependent yield shear stress which is

widely variable., Without the electric

field, the ER fluid has a reversible and
constant viscosity so that it flows as a
Newtonian fluid. Another salient feature of
the ER fluid is that the time required for
the variation is very short (< 0.001 sec)

(4-6).

the ER fluid provide the possibility of the

These attractive. characteristics of
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appearance of new engineering technology ,

for instance, an active vibration control
system, Recently, the application of the ER
f!uid to rotor-bearing systems has been
also initiated.

Tichy (7) developed explicit forms of
Reynolds’ equation for ER fluids to analyze
one-dimensional bearings such as a long

squeeze film damper and a
bearing. The

long journal
damping force of the long
squeeze film damper is nearly proportional
\to the yield shear stresses so that the ER
squeeze film damper can be quite effecti.ve
for reducing the vibration of the
associated rotor-bearing system. Morishita
and Mitsui (8) experimentally verified that
the rotor vibration can be substantially
reduced 'in a wide range of rotating speeds
by employing the ER fluid on the squeeze
film damper instead of using conventional
Newtonian fluids.

(9)

of the ER fluid journal

Dimarogonas and Kollias
investigated the stability properties
bearings. They

found that the force coefficients of ER



Journal bearings can be considerably

changed by employing the electric field,

and a significant extension of the

stability region can be obtained.

Nikolajsen and Hoque (10) had built and
ER damper

consisting of several moving thin disks for

tested a new of the

type
a rotor-bearing system. They reported a
possibility of eliminations of critical
speeds

controlling the external electric field

and instability problems by

imposed on ER fluid domains.
As mentioned the above, the applications
of ER fluids to the ddmpers and bearings

are very effective for reducing the

vibration of rotor-bearing systems and

controlling the properties of bearings.
However, researche on the applications of

ER fluids to rotor-bearing systems are

still to be further explored.

In the present paper, the lubrication
equation for short squeeze film dampers
operating with ER fluids is developed and
solved to investigate the effects of yield
shear stresses of ER fluids on the damping
capability of the ER short squeeze film

dampers. The Bingham lubrication theory

develped by Wada et al. (11-14) is adopted
herein to analyze the ER short squeeze film
dampers.

several

However, Wada et al. analyzed

types of one dimensional bearings

lubricated with greases, but not a squeeze
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film damper. Tichy (7) also presented only
a long bearing solution for the ER squeeze
film damper employing Bingham lubrication
theory similar to Wada's. As the results of
the ER short squeeze film damper analysis,
damping

and velocity profiles

the dimensionless coefficients,
fluid film pressure,
with the variation of yield shear stresses
of ER fluids are presented.

II. ANALYSIS

Fig. 1 shows the geometry and coordinate

circular
center=d
orbit

Fig. 1 Squeeze film damper geometry
system for a short squeeze film damper

executing a circular centered orbit. The

Jjournal is whirling with amplitude (e) and
constant angular frquency (), but not
spinning,

Considering the normal assumptions of

laminar, incompressive, and isoviscous flow

in the nparrow annular region, the



continuity and momentum equations

describing two dimensional steady flow

(neglecting the circumferential direction

flow) are given in dimensionless form as
fol lows:

av aw

- s = 0 (1]

am a &

ap a1

s = e (2]

3¢ am

Since ER fluids are assumed to be

modeled as Bingham fluid of which the yield
shear stress can be varied with respect to
the electric field, the dimensional flow

equations for the ER fluids are given by

uy =TT, ( !Ti> To) [3a]
pny =0 (T < To) [3b]
where u, v, To are the viscosity, the shear

rate, and the yield shear stress of the ER

fluids, respectively. According to the
experimental results reported in (4-6), the
relation between the yield shear stress and
the electric field strength is given by the

dimensional equation as follows:

[4]

wvhere E and H are the applied voltage and a
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gap which is the film thickness of the

squeeze film damper, respectively. Both

parameters o and § are the experimental

constants of which . the range of the
exponent (B) is 1 to 2.4. The ER fluid
equations, Egqs. [3] and [4], can be
expressed in the following dimensionless
form.
aw
.- 2T E T (it 2 1,) [5a]
anm
a w
--- =0 (it () [5b]
2 :
where
C To.
=T ------ = ST [6a]
HeR hP
E B C
e BB o
J ueR

Since the flow of ER fluids in the
squeezed film region is Poiseuille flow,: a
typical profile of the fluid film velocity
has a rigid core in the center plane of the
film as shown in Fig. 2. Thus the boundary
conditions for the dime;sionless velocity

of ER fluids are given by

w=0 v=0 (n=0) [7a]
W = W¢ (Yl=h|) [7b]
W o= We [7c]

{(mn=hz="h + he)
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Fig. 2 Velocity profile of ER fluid

where and h. are the dimensionless

We
velocity and thickness ‘of the core moving
as a solid, respectively,

After integrating Eqs. [2] and [5] with

the above boundary conditions, Egs. [7],
the following wvelocity expressions are
obtained-in the dimensionless form.
2 We
Wi = -p (M -hm) o+ ---7
2 h,
(0 <7< h) (8a]
w2 T W (h <n<h) [8b]
1 Ve
wi=-p'(n-h)n-hy) - --—-(n-h)
2 h-h,
(hy <0 <h) [8c]
where p° is the dimensionless pressure

gradient in the axial direction.
From the above velocity equations and

the continuity equation, Eq. [1]., a
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modified Reynolds’ equation for the ER

short squeeze film damper is obtained in

the following dimensionless form,

d[ 1 )
__:_-p'h|3+wc(h—h1):
dé | 6 J
h
v o= =0 (9]
at

From the fact that the shear stresses at
the film thickness, hy and h;, have the same
values as the yield shear stress of ER

fluids, the following velocity equation of

the core moving as a is

rigid body

obtained.

{10]

Also, in the squeezed film region, the
shear stress is symmetric with respect to

.the center plane of the film so that the

core will start to form at the fidm
thickness, h), given by
h To
hy = - * - [11]
2 p’

where the positive and negative signs are

used with the negative and positive

pressure gradient, respectively. As the

magnitude of the axial pressure gradient

decreases, the core of the ER fluid film

expands to fill the squeeze film region

(that is, h; approaches zero), and the

velocity of the core becomes =zero as



described in Eq. [10]. Finally, there
exists no flow in the squeezed film region.
The axial pressure gradient at this point
has the minimum value of the pressure

gradient required to initiate flow. This
critical pressure gradient is expressed as

follows (4):

[12]

Substituting Eqs. [10] and [11] into the
modified Reynolds’ [9]),

expressing the squeezed film term of the

equation, Eg. and
modified Reynolds’ equation in a coordinate
system rotating with the same frequency and
direction as the whirling motion, the final

modified Reynolds’ equation can be obtained

in the following dimensionless form.

de

1t

[13]

Note that in the case of a Newtonian fluid

(1o = 0) the above equation becomes the

conventional Reynolds® eguation for the
short squeeze film damper.

According to the solution of the
conventional short squeeze film damper

operating with a Newtonian fluid, the axial

pressure profile is harabolic so that the
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‘to the axial direction,

axial pressure gradient at the center of
the damper (& = 0) is zero. But in the case
of the short squeeze film damper operating
with ER fluids, an axial pressure gradient
greater than the critical pressure gradient
f12]
the center of the ER damper.

shown in Egq. is required to initiate
flow at
Therefore, the boundary conditions for the
pressure of the ER short squeezé film

damper could be described as follows;

dp

— = p (€=0) (14a]
dg

p =0 (&=1+L/D)

[14b]

In order to calculate the ER fluid film
pressure, the following cubic equétion in
terms of the axial pressure gradient is

derived by integrating the modified

Reynolds’ equation, Eq. [13], with respect
and applying the

boundary condition, Eq. [14a].

»3 f pc' 4 dh 6 ] 2
p -33-- - -3 -- i p’
[ 2 K d8 )
pv 3
+ el = 0 [15]
2

Among the three roots of the above cubic

equation, finding the axial pressure

gradient greater than the critical pressure

gradient at each specific location, the
final ER fluid film pressure profile
satisfying the boundary condition, Eq.



[14b], is determined by integrating the
axial pressure gradient.
Dimensionless radial and tangential film

forces are obtained by integration of the

pressure field over the journal surface,
that is:
F. D L/D 2z
fr=-—- = -—=f / pcos 8d8 df
Ct L 0 v
[16a]
F¢ D L/D 2n
fo=-- = -—-f [ psinB8do &
Cr L 0 v
[16b]
vhere

¥ = 0 for uncavitated full film solution

¥ = n for cavitated half film solution

In the above equations, C; is a conversion

factor and defines dimensionless film

forces. _-The above ER fluid film forces can

be expressed in terms of the force

coefficients which are very useful to
analyze the vibration of rotating machinery
supported on squeeze film dampers. Since
the film forces of the squeeze film damper
executing a circular centered orbit are

produced due to the tangential velocity of

the Journal center, _ the following
dimensionless damping coefficients only
exist without the stiffness coefficients
(15).
f. f,
Ceo = - -- = - == {17al
Vi E
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{17b]

Cop = - -~ = -
Vi &

where vi (= @ e / @ C) is the dimensionless
tangential velocity of the journal center.
[II. RESULTS AND DISCUSSION

To represent the results of analysis of

the ER short squeeze film damper,
dimensionless fluid film pressure and
velocity  profiles, and dimensionless

damping coefficients are calculated for
varying values of averaged yield shear
stresses of ER fluids,

ER

It is assumed that
damper is

fts L/D ratio is

the short squeeze film

cavitated (nx - film).

0.25, and the exponent of the ER fluid, 8

=1, is used in the following calculations,
Figures 3(a) and 3(b) show the profiles

of dimensionless ER fluid film pressure for

the eccentricity ratios £ = 0.5 and 0,8,

respectively, As the magnitude of avera:ged
yield shear stresses, 1, .4 increases (that

is, the strength of the applied electrical

field increases), the pressure

substantially increases when compared with

the pressure produced in the conventional

squeeze film damper operating with a

Newtonian fluid (%, amg = 0). The increment

of the pressure at the minimum film

thickness is very large and the magnitude
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Fig. 3 Dimensionless pressure profiles
(a) e =0.5 (b) ¢ =0.8
of the pressure at the maximum film
thickness is also greater than zero,
because of the critical axial pressure

gradient required to initiate a flow of ER
fluids.

Figure 4 shows the effects of the yield
shear stresses on the dimensionless axial

pressure field. The pressure profile of
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short squeeze film dampers is parabolic in
the case of a Newtonian fluid (teag = 0),
but it is not true in the case of ER fluids
(to.mg > 0) as shown in Figure 4. The
increment of the yield shear stress causes
an increment of the axial pressure gradient
which raises the ER fluid film pressure.
There exists a discontinuity in the
pressure profiles at the center of the ER
squeeze film damper (€ = Q) where the axial

pressure gradient is equal to the critical

axial pressure gradient, This result
satisfying the boundary condition,
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Fig. 4 Dimensionless pressure profiles
at 8 = 210°, £ =0.5

Eq. [l4a], can be easily obtained by
substituting ¢ = 0 into the governing cubic
equation, Eq. [15].

Figures 5(a) and 5(b) show dimensionless
velocity profiles of the ER fluid (Toag =
0.6) and a Newtonian fluid (Toaw = 0) at

the axial locations £ = 0.1 and 0.2 for
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Fig. 5 Velocity profiles for £ =0, 5,
To.a =0.0 and 0.6 (a) 6=210° (b) 8=270°
circumferential locations, 6 = 210° and
270°, respectively., There are floating

rigid cores which play an important role in
increasing ER fluid film 'pressure produced

in the narrow squeezed film,

From the above pressure fields
presented, the ER fluid film forces and
corresponding force coefficients are
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calculated. Since the squeeze film damper
executing a circular centered orbit cannot
generate any fluid film forces without the
velocity of the journal center, it has only
without stiffness

damping coefficients

coefficients. The dimensionless direct and
cross coupled damping coefficients, C. and
Cre, shown in

are Figures 6 and 7,

respectively, These damping coefficients
are calculated using the assumptions that
the ER fluid film is cavitated (a film) and
its experimental exponent is B = 1. Both
: coupled damping

coefficients are considerably increased as

the direct and cross

averaged yield shear stresses increase. In

L/D
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noi
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Fig. 6 Direct damping coefficients

a rotor system supported on squeeze film
dampers, the direct damping coefficient, Ci
pure damping which

reduces the vibration of the rotor system.

, plays a role as

But the cross coupled damping coefficient,



Cr, plays a part in the stiffness which
directly affects the critical speeds of the
rotor system (16,17). Morishita and Mitsui
(8) reported also that the lst and 2nd
critical speeds of a flexible rotor systenm
incorperating the ER squeeze film damper
have been increased and its damping ratio
has also been considerably increased with
increasing the strength of the electric
field.

In order to investigate the effect of the
experimental exponent value on the damping
coefficients, the increment rates of the
damping coefficients with § = 2 relative to
those with B = 1 are represented in Table

I. Both of the damping coefficients, C,. and
Ce
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Fig. 7 Cross coupled damplng coefficients

increase with increasing value of the

exponent of ER fluids. In particular,, the

percentage increase rate in the damping
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coefficients becomes larger as both the
yield shear stresses and the eccentricity

higher

effectiveness of the yield shear stress at

ratio increase because of the
the narrow film gap.

In the process of numerical calculation
for the ER long squeeze film damper (7), it
might be difficult to get a converged
solution because the governing equation

[151)
unknown

(similar to the cubic equation,
highly

circumferential

Eq.

is nonlinear near the
location at which a rigid
cc;re fills the fluid film gap. However, in
the case of the ER -short squeeze film

damper, there

numerical procedure since the location

is no difficulty in the
that a rigid core fills the gap ié always
the center for a the short squeeze film

damper,

VI. CONCLUSIONS

The lubrication analysis of short
squeeze - film dampers operating with ER
fluids having the characteristics of
Bingham fluids has been .g:arried out. The
governing equation for the ER short squeeze
film damper was developed and solved to
investigate the possibility of a great
in the damping capability of

the squeeze film damper. It was found that

improvement

a substantial increase in both the direct



Table I. Increment rates of dimensionless damping coefficients
with B = 1 to those with § = 2

Ctt Crt
To,avy To.avg
£
0.3 0.6 0.9 0.3 0.6 0.9

0.2 2.8 % 3.2 % 34%

38.8 % 43.8 % 46.1 %

0.4 10.0 % 12.4 % 30.5 %

43.3 % 53.0 % 57.6 %

0.6 22.7 % 30.8 % 35.0 %

58.6 % 77.1 % 86.8 %

0.8 50.5 % 74.4 % 88.8 x

398.9 % 142.0 167.3 %

and cross coupled damping coefficients
was obtained by using ER fluids instead of
Newtonian fluids. It is anticipated that
the ER short squeeze film damper could be
very effective for actively reducing the
vibration and controlling the critical
speeds of a rotor-bearing system by
tailoring the strength of the electric

field.
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