• Title/Summary/Keyword: Lubricant effect

Search Result 226, Processing Time 0.025 seconds

An Effect on the Process Parameter of Mg Alloy at Warm Sheet Forming (Mg 합금 온간 판재 성형시 공정 변수의 영향에 관한 연구)

  • Lee, Y.S.;Kwon, Y.N.;Kim, M.C.;Choi, S.W.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.43-47
    • /
    • 2006
  • Since the sheet metal forming of Mg alloy is performing at elevated temperature, the effect of process conditions related with the forming temperature is very important factor. Therefore, the investigation for process variables is necessary to design the tools and process conditions. In this study, the effects of process variables were studied by the experimental and FE analysis using the square cup deep drawing. The temperature, forming speed, and lubricant condition were investigated. When forming temperature was $250^{\circ}C$, speed forming was low, and teflon sheet was used as lubricant, the formed parts were good without defects.

  • PDF

The effect of sintering condition and composition on the mechanical properties of bond materials for micro-blades (Micro Blade용 Bond재료의 소결조건과 조성이 기계적 특성에 미치는 영향)

  • Kim, Song-Hee;Moon, Jong-Chul
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.137-144
    • /
    • 2007
  • Sintering condition and various chemical composition of bond materials for micro-blades were studied. The methods mixing of pure powders and using pre-alloyed powders for compaction and sintering were compared and optimized in terms of the evaluation of bending strength and fractographic study. The effect of the amount of graphite as a lubricant and diamond abrasive on the strength of sintered bond materials and fracture toughness was investigated. The strength decreased with increasing the amount of graphite and diamond abrasive.

  • PDF

Friction Reduction with Oil-Soluble Organo-Molybdenum Compound and Environmental Effect (유용성 몰리브덴 화합물의 마찰감소 작용과 분위기효과)

  • 김영환
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.223-230
    • /
    • 2000
  • Factors influencing friction reduction with MODTP(molybdenum dialkyl dithiophosphate) lubricant were investigated through a frictioning experiment using two-cylinder edge surface frictioning tester and XPS surface analysis. The friction reduction effect gained with MoDTP lubricant appeared to be largely attributable to MoS$_2$ formation on the frictioning interface. Under N$_2$ atmosphere, Mo diffused into the metal substrate, easily escaping from MoS$_2$ so the friction reduction effect from MoDTP was not gained. However, when an oxide surface film was preliminary prepared on frictioning surface, this Mo diffusion to metal substrate from MoS$_2$ was effectively inhibited. Then desired lubulication effect of MoDTP was gained even under N$_2$atmosphere. As such, the existence of a surface oxide film on the frictioning surface was concluded to be of essential importance in order to gain a lubrcating effect with MoDTP.

Frictional characteristics of electro Zn-Ni alloy coated steel sheets (Zn-Ni계 합금도금강판의 마찰특성에 관한 연구)

  • 김영석;박기철;조재억
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1807-1818
    • /
    • 1991
  • The frictional characteristic of Zn-Ni electrogalvanized steel sheet was investigated by experimental procedures. To clarify the effect of surface property on the frictional characteristic of Zn-Ni coated steel sheet, Micro-hardness test, SEM analysis and X-ray diffraction analysis were carried out. Coefficients of friction for various stamping lubricant and Ni content in coated layer were measured by a draw bead friction test. The results show that frictional characteristic is very sensitive to Ni content of coated layer and depends on stamping lubricant. For Ni content less than about 11%, selection of proper lubricant is necessary to obtain low coefficient of friction in Zn-Ni coated steel sheet such as in case of cold rolled steel sheet.

The effect of lubricant containing diamond nano-powder on performance (나노다이아몬드 첨가 윤활제가 디젤엔진의 성능에 미치는 영향)

  • Son, Kwun;Lee, Jung-Seok;Park, Tae-Hee;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1039-1044
    • /
    • 2014
  • Many research works have been conducted to improve a lubrication performance on diesel engines working in severe conditions. In this study the lubricant containing diamond nano-powder is applied on a diesel engine, and the engine performance is analyzed. The concentration of nano-diamond lubricant fabricated by the matrix synthesis dispersion method is varied. The test results with the nano lubricants are compared with the base oil. The result shows the improvement of efficiency with friction reduction and exhaust emissions reduction of CO, smoke and so on.

Evaluation of Dicing Characteristics of Diamond Micro-blades with Cu/Sn Binder Including Etched WS2 Particles (표면 부식 처리한 WS2 입자를 첨가한 Cu/Sn계 다이아몬드 마이크로 블레이드의 절삭특성)

  • Kim, Song-Hee;Jang, Jaecheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • $WS_2$ particles were added to micro-diamond blades with Cu/Sn binding metal as lubricants to improve cutting efficiency. It was found in previous works that the added $WS_2$ lubricant could reduce remarkably the momentary energy consumption during dicing tests but increased wear rate slightly owing to weak bonding between lubricant particles and bond metals. In the present work, the surface of $WS_2$ lubricant particles were etched for activating the surface of $WS_2$ particles that provide even distribution of particles during powder mixing process and improvement of wetting at the interfaces between $WS_2$ particles and molten Cu/Sn bond metals during pressurized sintering so that could provide the improved strength of micro-blades and result in extended life. Chipping behavior of workpiece with the types of micro-blades including $WS_2$ were compared because it is important in semiconductor and micro-packaging industries to control average roughness and straightness of sliced surface which is closely related with quality.

De-icing of the hydrophobic treated nanoporous anodic aluminum oxide layer (소수성 처리된 나노다공성 알루미늄 양극산화피막의 제빙)

  • Shin, Yeji;Kim, Jinhui;Shin, Dongmin;Moon, Hyung-Seok;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.222-229
    • /
    • 2021
  • Icing causes various serious problems, where water vapor or water droplets adhere at cold conditions. Therefore, understanding of ice adhesion on solid surface and technology to reduce de-icing force are essential for surface finishing of metallic materials used in extreme environments and aircrafts. In this study, we controlled wettability of aluminum alloy using anodic oxidation, hydrophobic coating and lubricant-impregnation. In addition, surface porosity of anodized oxide layer was controlled to realize superhydrophilicity and superhydrophobicity. Then, de-icing force on these surfaces with a wide range of wettability and mobility of water was measured. The results show that the enhanced wettability of hydrophilic surface causes strong adhesion of ice. The hydrophobic coating on the nanoporous anodic oxide layer reduces the adhesion of ice, but the volume expansion of water during the freezing diminishes the effect. The lubricant-impregnated surface shows an extremely low adhesion of ice, since the lubricant inhibits the direct contact between ice and solid surface.

Effect of Lubricants on the Physical Properties of Poly(butylene terephthalnte) (폴리(부틸렌 테레프탈레이트)의 물성에 대한 윤활제의 효과)

  • Kim, Hoy-Gap;Kim, Jun-Kung;Lim, Soon-Ho;Lee, Kun-Wong;Park, Min;Kang, Ho-Jang
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.239-244
    • /
    • 2004
  • Effect of lubricants on the rheological and thermal properties of poly(butylene terephthalate) [PBT] were investigated. Calcium stearate and adipic acid glycol polyester (AhGP) were used as processing lubricants for PBT. Decrease of melt viscosity was accomplished by the addition of 1 wt% of lubricants. It was understood that melt viscosity was affected by the enhancement of chain mobility of PBT with AhGP as an internal lubricant as well as the lubricity on processing equipment developed by calcium stearate as an external lubricant. Lubricants also influenced chain scission of PBT which caused the viscosity drop as well. In addition, lubricant is resulted in the lowering of thermal stability, however, this might be minimized by adding less than 3 wt% of calcium stearate as a lubricant. As a consequence, calcium stearate as an external lubricant is more effective to control the melt viscosity of PBT with minimizing of chain scission and thermal instability in PBT.

The Research for effect of lubricant oil aging on environmental performance (자동차 윤활유의 성상 및 열화가 환경성에 미치는 영향 연구)

  • Kim, Jeong-Hwan;Kim, Ki-Ho;Ha, Jong-Han;Jin, Dong-Young;Myung, Cha-Lee;Jang, Jin-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.12-24
    • /
    • 2017
  • The main purpose of this research is for the investigation on the impact of engine oil aging on PM and DPF. It is widely known that lubricant specifications and consumption from an ICE have significantly influenced on the regulated and unregulated harmful emissions as the engine operating conditions. Considering DPF clogging phenomena with lubricant-derived soot/ash components, simulated aging mode for the DPF was newly designed for engine dynamometer testing. PM/ash accumulation cycle were developed in reflecting real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for the ash accumulation. The test duration for DPF aging reached around 100hrs with high- and low-SAPS engine oils, respectively. Using high SAPs engine oil made more PM/ash accumulation compared with low SAPs engine oils and it could accelerate fouling of EGR in engine. Fouling of EGR made effects on more harmful exhaust gases emissions. The test results on engine lubricant under engines operating conditions will deliver for the establishment of regulated and unregulated toxic emissions policy, lubricant quality standard.

Ball Milling of Aluminum Foil Scrap (알루미늄 호일 스크랩의 볼밀링)

  • Hong, Seong-Hyeon;Kim, Byeong-Gi
    • 연구논문집
    • /
    • s.29
    • /
    • pp.131-139
    • /
    • 1999
  • The effect of ball milling conditions in the milling of aluminium foil scraps was studied. Initial foil thickness, ball size. content of oleic acid. weight ratio of mineral spirits/foil. charged amount of foil were varied in wet ball milling process. It is impossible to make flake powders by milling of foil scraps with thickness $120 \mum$. As foil thickness decreases from $60\mum$ to $6.5\mum$, Mean size of powder milled for 30 h decreases from 107 µm to 17 µm. Bigger ball is slightly beneficial for milling of foils to the flake powders due to the larger impact energy produced by them. It is impossible to mill the foil without oleic acid to fabricate the flake powder. As content of oleic acid increases from 1.5 % to 5 %, mean size of flake powder milled for 30 h is drastically decreased. For the mineral spirits content below 50 %, foil scrap was not milled because sliding motion of balls by lubricant effect between balls and wall of container. As weight ratio of mineral spirits and foil increase over 100 %, foils were milled powders with mean powder size 15 - 20 때 irrespective of mineral spirits content due to reduced lubricant effect. As charged amount of foil decreases, mean powder size decreases due to increased collision frequency between ball and foil.

  • PDF