• 제목/요약/키워드: Lower explosion limit

검색결과 113건 처리시간 0.02초

노말언데칸의 연소특성치의 측정 (The Measurement of Combustible Characteristics of n-Undecane)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제27권2호
    • /
    • pp.11-17
    • /
    • 2013
  • 노말언데칸의 안전한 취급을 위해서 하부인화점, 상부인화점, 연소점 그리고 발화지연시간에 의한 발화온도를 측정하였다. 또한 노말언데칸의 하부와 상부인화점의 측정값을 이용하여 폭발하한계와 상한계를 예측하였다. 밀폐식 장치에 의한 노말언데칸의 하부인화점은 $59^{\circ}C$$67^{\circ}C$로 측정되었고, 개방식 장치에 의한 하부인화점은 $67^{\circ}C$$72^{\circ}C$로 측정되었다. 클리브랜브 장치에 의한 노말언데칸의 연소점은 $74^{\circ}C$로 측정되었다. ASTM E659-78 장치를 사용하여 자연발화 온도와 발화지연시간을 측정하였고, 여기서 측정된 최소자연발화온도는 $198^{\circ}C$였다. 측정된 하부인화점 $59^{\circ}C$와 상부인화점 $83^{\circ}C$를 이용하여 예측된 폭발하한계는 0.65 Vol.%, 폭발상한계는 2.12 Vol.%였다.

톨루엔의 위험성 평가를 위한 연소특성치 측정 및 고찰 (Measurement and Investigation of Combustible Characteristics for Risk Assessment of Toluene)

  • 하동명;정기신
    • 한국화재소방학회논문지
    • /
    • 제24권2호
    • /
    • pp.76-81
    • /
    • 2010
  • 톨루엔의 안전한 취급을 위해서 $25^{\circ}C$에서 폭발한계와 폭발한계 온도의존성을 고찰하였다. 또한 인화점과 최소발화온도를 측정하였다. 공정의 안전을 위해서 톨루엔의 폭발하한계는 1.13vol%, 상한계는 7.9vol%를 추천한다. 유통법에 의한 하부인화점은 $5^{\circ}C$, 상부인화점은 $40^{\circ}C$로 측정되었으며, Setaflash 장치에 의한 상부인화점은 $41.5^{\circ}C$로 측정되었다. ASTM E659-78 장치에 최소자연발화온도는 $547^{\circ}C$로 측정되었다. 그리고 톨루엔의 새로운 폭발한계 온도의존식을 제시하였으며, 제시한 온도의존식은 문헌값과 일치하였다.

LP가스의 폭발 현상 및 화염전파에 관한 연구 (A Study on the Explosion Phenomenon and Flame Propagation of LP Gas)

  • 최재욱;이동훈;김태근;민철웅;임우섭;최병식
    • 한국가스학회지
    • /
    • 제11권2호통권35호
    • /
    • pp.65-70
    • /
    • 2007
  • LP 가스의 폭발현상 및 위험성을 평가하기 위하여, 산소농도변화와 LP 가스의 농도에 따른 혼합가스 조성을 변화시켜 실험을 행하였다. 산소농도 21%에서 LP 가스의 농도가 증가할수록 폭발하한계는 낮아졌으며, 최소산소농도(MOC, Minimum Oxygen Concentration)는 1.0 bar, 1.5 bar, 2.0 bar에서 각각 14.5%, 12.0%, 11.5%로 낮아졌다. 최대폭발압력은 압력이 증가할 경우 $6.46kg/cm^2,\;9.41kg/cm^2,\;13.49kg/cm^2$로 증가하였으며, LP 가스의 초기압력이 클수록 화염의 전파속도가 증가하였다.

  • PDF

용액열역학에 의한 2성분계 혼합물의 폭발하한계 예측 (Prediction of Lower Explosion Limits of Binary Liquid Mixtures by Means of Solution Thermodynamics)

  • 하동명;이성진
    • 한국가스학회지
    • /
    • 제13권5호
    • /
    • pp.20-25
    • /
    • 2009
  • 혼합물의 폭발하한계는 Raoult의 법칙, Dalton의 법칙, Le Chatelier 법칙 그리고 활동도계수 모델식을 이용하여 예측될 수 있다. 본 연구에서는 ethylacetate-ethanol 계와 ethanol+toluene 계의 폭발하한계를 예측하기 위해 Raoult의 법칙 그리고 활동도계수 모델식인 van Laar 식과 Wilson 식을 이용하였다. 계산값과 문헌값을 비교한 결과, Raoult의 법칙에 의한 계산값이 활동도 모델식에 의한 계산값 보다 모사성이 뛰어남을 확인하였다.

  • PDF

노말도데칸의 인화점과 최소발화온도 측정에 의한 연소위험성 고찰 (The Investigation of Combustible Hazard by Measurement of Flash Point and Autoignition Temperature of n-Dodecane)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제25권2호
    • /
    • pp.120-125
    • /
    • 2011
  • 노말도데칸의 안전한 취급을 위해서 25에서 폭발한계를 고찰하였고, 하부인화점과 발화지연시간에 의한 발화온도를 측정하였다. 공정의 안전을 위해서 노말도데칸의 폭발하한계는 0.60Vol.%, 상한계는 4.7Vol.%를 추천하였고, 하부인화점은 밀폐계에서 $77^{\circ}C$$80^{\circ}C$와 개방식에서 $84{\sim}87^{\circ}C$로 측정되었다. ASTM E659-78 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 최소자연발화온도는 $222^{\circ}C$ 측정되었다.

지하 발전소 환기설비에 대한 안전성 평가 (The Safety Assessment for Ventilation Facilities of Underground Power Plant)

  • 고원경;강승규;정영대;김영구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.331-332
    • /
    • 2014
  • Underground power plant is required the strict safety management and safety assessment. Because it is the high risk of explosion by characteristic of enclosed space. In case gas leak of enclosed space, the ventilation facilities is very important in order to prevent explosion by the maintain less than the LEL(lower explosive limit). Thus, Through a safety assessment of ventilation volume is to reduce the risk for ventilation facilities in Underground power plant.

  • PDF

누출특성을 통한 폭발위험장소 선정방법의 개선에 대한 연구 (A Study on the Improvement of Classification of Explosion Hazardous Area using Hypothetic Volume through Release Characteristic)

  • 김대연;천영우;이익모;황용우
    • 대한안전경영과학회지
    • /
    • 제19권2호
    • /
    • pp.31-39
    • /
    • 2017
  • Classify of explosion hazardous areas must be made at the site where flammable materials are used. This reason is that it is necessary to manage ignition sources in of explosion hazardous areas in order to reduce the risk of explosion. If such an explosion hazard area is widened, it becomes difficult to increase the number of ignition sources to be managed. The method using the virtual volume currently used is much wider than the result using CFD(Computational Fluid Dynamics). Therefore, we tried to improve the current method to compare with the new method using leakage characteristics. The result is a realistic explosion hazard if the light gas is calibrated to the mass and the heavy gas is calibrated to the lower explosion limit. However, it is considered that the safety factors should be taken into account in the calculated correction formula because such a problem should be considered as a buffer for safety.

표면열처리용 변성가스의 위험성에 관한 연구 (A Study on the Hazard of Converted Gas for Surface Heating Treatment)

  • 최재욱;민철웅;임우섭;이병철;김동규
    • 한국가스학회지
    • /
    • 제9권3호
    • /
    • pp.9-14
    • /
    • 2005
  • 변성가스의 폭발특성을 평가하기 위하여, 산소농도 변화와 수소의 첨가에 따른 변성가스 조성을 변화시켜 폭발거동에 대한 실험을 행하였다. 이러한 실험을 행한 결과 산소농도 $21\%$에서 변성가스와 수소의 농도가 증가할수록 폭발하한계는 낮아졌으며, 산소농도 $6\%$에서 폭발한계산소농도를 구하였다. 변성가스의 최대폭발압력은 $4.61 kg_f/cm^2$의 최적값을 얻었고, 이때 최대폭발압력상승속도는 변성가스 농도 $40\%$에서 $130.75 kg_f/cm^2/s$를 구하였다. 또한 폭발에 필요한 최소점화에너지는 변성가스 농도 $50\%$에서 0.13 mJ를 구하였다.

  • PDF

MSDS (Material Safety Data Sheet)를 위한 벤질알코올 연소특성치의 측정 및 예측 (The Measurement and Prediction of the Combustible Properties of of Benzyl-Alcohol for MSDS (Material Safety Data Sheet))

  • 하동명
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.190-194
    • /
    • 2017
  • 사업장에서 화재 및 폭발을 예방하기 위해서는 연소특성치로 인화점, 폭발한계, 최소자연발화온도 등을 들 수 있다. 화학공정의 안전을 위해서 취급 물질의 정확한 물질보건안전자료(MSDS)의 연소특성치 사용은 매우 중요하다. 화학산업에서 다양하게 사용되고 있는 벤질알코올의 안전한 취급을 위해서 인화점과 최소자연발화온도를 측정하였다. 벤질알코올의 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다. 벤질알코올의 Setaflash 밀폐식은 $90^{\circ}C$, Pensky-Martens 밀폐식에서는 $93^{\circ}C$ 그리고 Tag 개방식에서는 $97^{\circ}C$, Cleveland 개방식에서는 $100^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 측정된 벤질알코올의 최소자연발화온도는 $408^{\circ}C$로 측정되었다. Setaflash 밀폐식에 의해 측정된 벤질알코올의 하부인화점 $90^{\circ}C$의 폭발하한계는 1.17 vol%로 계산되었다. 본 연구에서는 Setaflash 밀폐식에 의해 측정된 벤질알코올의 하부인화점을 이용하여 폭발하한계의 예측이 가능하였다.

Setaflash 장치를 이용한 산류와 케톤류의 폭발상한계 예측 (Prediction of Upper Explosion Limits (UEL) of Acids and Ketones by Using Setaflash Tester)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제25권2호
    • /
    • pp.114-119
    • /
    • 2011
  • 폭발한계와 인화점은 가연성물질의 화재 및 폭발의 위험성을 결정하는데 중요한 연소특성치이다. 본 연구에서는 산류와 케톤류의 폭발상한계를 예측하기 위해서, 평형상태에서 인화점을 측정하는 Setaflash 밀폐식 장치(ASTM D3278)를 사용하여 이들의 상부인화점을 측정하였다. 측정된 상부인화점을 이용하여 Antoine 식에 의한 계산된 폭발상한계는 기존의 문헌값들보다 약간 낮게 나타났다. 본 연구에서 제시한 실험 및 예측 방법을 이용하여 다른 가연성물질의 폭발상한계 예측이 가능해 졌다.