• 제목/요약/키워드: Lower Flash Points

검색결과 84건 처리시간 0.021초

노말트리데칸의 연소특성치의 적정성 고찰 (The Investigation of Compatibility of Combustible Characteristics for n-Tridecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.83-88
    • /
    • 2012
  • For the safe handling of n-tridecane, the lower flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower explosion limits by the lower flash points were calculated. The lower flash points of n-tridecane by using closed-cup tester were experimented $92^{\circ}C$ and $96^{\circ}C$. The lower flash points and fire point of n-tridecane by using open cup tester were experimented 100 oC and 103 oC, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-tridecane. The experimental AIT of n-tridecane was 223 oC. The calculated lower explosion limit by using measured lower flash point 92 oC for n-tridecane was 0.6 Vol.%.

노말헥사데칸의 화재 및 폭발 특성치의 측정 (The Measurement of Fire and Explosion Properties of n-Hexadecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

노말테트라데칸의 연소특성치 측정에 의한 위험성 평가 (The Evaluation of Hazard by Measurement of Combustible Characteristics of n-Tetradecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.70-76
    • /
    • 2012
  • For the safe handling of n-tetradecane, the lower flash points and the upper flash point, fire point, AITs (auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-tetradecane were calculated. The lower flash points of n-tetradecane by using closed-cup tester were measured $104^{\circ}C$ and $112^{\circ}C$. The lower flash points and fire point of n-tetradecane by using open cup tester were measured $113^{\circ}C$ and $115^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-tetradecane. The experimental AIT of n-tridecane was $207^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $104^{\circ}C$ and upper flash point $140^{\circ}C$ for n-tetradecane were 0.63 Vol.% and 3.18 Vol%.

노말펜타데칸의 화재 및 폭발 특성치의 측정 (The Measurement of Fire and Explosion Properties of n-Pentadecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.53-57
    • /
    • 2013
  • For the safe handling of n-pentadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-pentadecane were calculated. The lower flash points of n-pentadecane by using closed-cup tester were measured $118^{\circ}C$ and $122^{\circ}C$. The lower flash points and fire point of n-pentadecane by using open cup tester were measured $126^{\circ}C$ and $127^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-pentadecane. The experimental AIT of n-pentadecane was $195^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $118^{\circ}C$ and upper flash point $174^{\circ}C$ for n-pentadecane were 0.54 Vol.% and 6.40 Vol.%.

파라크실렌과 에폭시수지 혼합물의 인화점에 관한 연구 (Flash Point of p-xylene and Epoxy Resins Mixtures)

  • 윤희승;강민호;하동명;정국삼
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.78-82
    • /
    • 2000
  • The flash point is an important property and hazardous index of a flammable liquid. The flash points are used by virtually all the environmental, health, and safety organizations in both government and industry to classify flammable liquids for safety and transportation regulations. The basics of all flash points behavior are concerned with the vapor pressure and explosive limits. The flash points of pure components and the mixture of solvents can be calculated with the use of the laws of Raoult, Dalton and Le Chatelier. In this paper, experimentally determined lower flash points of a p-xylene and epoxy resin system were compared with the calculated values by using Raoults law. Calculated lower flash points were in reasonable agreement with the observed values.

  • PDF

가연성물질의 인화점에 관한 연구 -용액론에 의한 3성분계의 인화점 예측을 중심으로- (A Study on Flash Points of a Flammable Substancea - Focused on Prediction of Flash Points in Ternary System by Solution Theory -)

  • 하동명;이수경
    • 한국화재소방학회논문지
    • /
    • 제15권3호
    • /
    • pp.14-20
    • /
    • 2001
  • 인화점은 가연성물질의 화재 및 폭발의 잠재위험성를 결정하는 데 가장 중요한 기초적인 특성치 가운데 하나이다. 인화점의 구분은 혼합용제를 구성하는 가연성액체를 안전하게 취급하기 위해서 매우 중요하다. 모든 인화점 거동의 기초는 증기압과 폭발한계이다. 가연성혼합용제의 인화점은 라울의 법칙, 달톤의 법칙, 르샤틀리에 법칙 그리고 활동도계수 모델을 사용함으로서 계산할 수 있다. 본 연구에서는 가연성 3성분계의 하부인화점의 문헌값을 라울의 법칙과 MRSM 모델에 의해 계산된 값과 비교하였다. 3성분계의 하부인화점의 자료는 라울의 법칙과 MRSM 모델에 의해 예측된 값과 거의 일치하였다. 제시한 방법론에 의해 가연성혼합용제의 인화점 실험자료의 신뢰도를 평가하는 것이 가능하다.

  • PDF

The Lower Flash Points of the n-Butanol+n-Decane System

  • Dong-Myeong Ha;Yong-Chan Choi;Sung-Jin Lee
    • 한국화재소방학회논문지
    • /
    • 제17권2호
    • /
    • pp.50-55
    • /
    • 2003
  • The lower flash points for the binary system, n-butanol+n-decane, were measured by Pensky-Martens closed cup tester. The experimental results showed the minimum in the flash point versus composition curve. The experimental data were compared with the values calculated by the reduced model under an ideal solution assumption and the flash point-prediction models based on the Van Laar and Wilson equations. The predictive curve based upon the reduced model deviated form the experimental data for this system. The experimental results were in good agreement with the predictive curves, which use the Van Laar and Wilson equations to estimate activity coefficients. However, the predictive curve of the flash point prediction model based on the Willson equation described the experimentally-derived data more effectively than that of the flash point prediction model based on the Van Laar equation.

2-프로판올과 톨루엔 혼합물질의 인화점 측정에 관한 연구 (Study on the Flash Point Determination of 2-Propanol-Toluene Mixtures)

  • 목연수;최재욱;김영일;최일곤;하동명
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.114-119
    • /
    • 1997
  • The lower flash points and upper flash points of 2-propanol and toluene mixtures were determined by air-blowing method instead of Tag-closed flash point tester. The relations between the flash points and the composition of the mixtures are as follows, $T_{F.L}=4.3182+6.0909X_1$ $T_{F.U}=39.3636-2.9091X_1$ As results, the experimental data and the estimated values from the relations are considerably agreed, and we could plotted the relative diagram between flash points and the explosive range.

  • PDF

초산부틸의 화재 및 폭발 특성치 측정 및 예측 (Measurement and Prediction of Fire and Explosion Characteristics of n-Butylacetate)

  • 하동명
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.25-31
    • /
    • 2017
  • The flash point, explosion limits, autoignition temperature(AIT) are important combustible properties which need special concern in the chemical safety process that handle hazardous substances. For the evaluation of the flammable properties of n-butylacetate, this study was investigated the explosion limits of n-butylacetate in the reference data. The flash points, fire points and AIT by the ignition delay time of n-butylacetate were experimented. The lower flash points of n-butylacetate by using the Setaflash and Pensky-Martens closed-cup testers were $24^{\circ}C$ and $26^{\circ}C$, respectively. The flash points of n-butylacetate using the Tag and Cleveland open cup testers are measured $31^{\circ}C$ and $40^{\circ}C$, respectively. And the fire points of n-butylacetate by the Tag and Cleveland open cup testers were measured $32^{\circ}C$ and $41^{\circ}C$. The AIT of n-butylacetate measured by the ASTM 659E tester was measured as $411^{\circ}C$. The lower explosion limit of lower flash point $24^{\circ}C$, which was measured by the Setaflash tester, was calculated to be 1.40 vol%. Also, the upper explosion limit of upper flash point $67^{\circ}C$ the Setaflash tester was calculated to be 12.5 vol%.

오토크레졸의 MSDS 연소특성치의 적정성 연구 (A Study on the Appropriateness of the Combustible Properties of MSDS for o-Cresol)

  • 하동명
    • 한국안전학회지
    • /
    • 제30권2호
    • /
    • pp.21-26
    • /
    • 2015
  • For the safe handling of o-cresol, this study was investigated the explosion limits of o-cresol in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of o-cresol by using closed-cup tester were experimented in $77^{\circ}C$ and $80^{\circ}C$. The lower flash points of o-cresol by using open cup tester were experimented in $86^{\circ}C$ and $87^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for o-cresol. The AIT of o-cresol was experimented as $495^{\circ}C$. The lower explosion limit(LEL) by the measured the lower flash point for o-cresol was calculated as 1.27 Vol%.