• Title/Summary/Keyword: Low-voltage

Search Result 6,405, Processing Time 0.036 seconds

Development of Dispenser System with Electrohydrodynamic and Voice Coil Motor for White Light Emitting Diode (백색 LED 제조를 위한 정전기력과 보이스코일모터를 이용한 디스펜서 시스템 개발)

  • Kang, Dong-Seong;Kim, Ki-Beom;Ha, Seok-Jae;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6925-6931
    • /
    • 2015
  • LED(Light Emitting Diode) is used in various filed like a display because of low power consuming, long life span, high brightness, rapid response time and environmental-friendly characteristic. General fabrication method is combination blue light LED chip with yellow fluorescent substance. Because this way is suitable for industry field in terms of convenience, economic, efficiency. In white light LED packaging process, encapsulation process that is dispensing fluorescent substance with silicon to blue light LED chip is most important. So, in this paper we develop EHD pump system using voice coil motor and electrostatic pump for dispensing fluorescent substance. For these things we conduct basic test about liquid surface profiles by voltage and process time. Through this data we decide optimal process condition and verify the optimal condition using design of experiment method. And to confirm uniformity of the condition, we conduct repeat dispensing test.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

Study on Performance Evaluation of Dental X-ray Equipment (치과 방사선 발생기의 성능평가에 관한 연구)

  • Jung, Jae-Eun;Jung, Jae-Ho;Kang, Hee-Doo;Lee, Jong-Woong;Ra, Keuk-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2009
  • I think this will be valuable reference for assuring consistency and homogeneity of clarity and managing dental radiation equipment by experimentation of dental radiation equipment permanent which based on KS C IEC 61223-3-4 standard and KS C IEC 61223-2-7. Put a dental radiation generator and experiment equipment as source and film(sensor) length within 30 em, place the step-wedge above the film(sensor). Tie up tube voltage 60 kVp, tube current 7 mA and then get an each image through CCD sensor and film by changing the exposure time as 0.12sec, 0.25sec, 0.4sec. Repeat the test 5times as a same method. Measure the concentration of each stage of film image, which gained by experiment, using photometer. And the image that gained by CCD sensor, analyze the pixel value's change by using image J, which is analyzing image program provided by NIH(National Institutes of Health). In case of film, while 0.12sec and 0.25sec show regular rising pattern of density gap as exposure time's increase, 0.4sec shows low rather than 0.12sec and 0.25sec. In case of CCD sensor density test, the result shows opposite pattern of film. This makes me think that pixels of CCD's sensor can have 0~255 value but it becomes saturation if the value is over 255. The way that getting clear reception during decreasing human's exposed radiation is one of maintaining an equipment as a best condition. So we should keeping a dental radiation equipment's condition steadily through cyclic permanent test after factor examination. Even digital equipment doesn't maintain a permanent, it can maintain a clarity by post processing of image so that hard to set it as standard of permanent test. Therefore it would be more increase the accuracy that compare a film as standard image. Thus I consider it will be an important measurement to care for dental radiation equipment and warrant homogeneity, consistency of dental image's clarity through comparing pattern which is the result from factor test against cyclic permanent test.

  • PDF

T-Type Calcium Channels Are Required to Maintain Viability of Neural Progenitor Cells

  • Kim, Ji-Woon;Oh, Hyun Ah;Lee, Sung Hoon;Kim, Ki Chan;Eun, Pyung Hwa;Ko, Mee Jung;Gonzales, Edson Luck T.;Seung, Hana;Kim, Seonmin;Bahn, Geon Ho;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.439-445
    • /
    • 2018
  • T-type calcium channels are low voltage-activated calcium channels that evoke small and transient calcium currents. Recently, T-type calcium channels have been implicated in neurodevelopmental disorders such as autism spectrum disorder and neural tube defects. However, their function during embryonic development is largely unknown. Here, we investigated the function and expression of T-type calcium channels in embryonic neural progenitor cells (NPCs). First, we compared the expression of T-type calcium channel subtypes (CaV3.1, 3.2, and 3.3) in NPCs and differentiated neural cells (neurons and astrocytes). We detected all subtypes in neurons but not in astrocytes. In NPCs, CaV3.1 was the dominant subtype, whereas CaV3.2 was weakly expressed, and CaV3.3 was not detected. Next, we determined CaV3.1 expression levels in the cortex during early brain development. Expression levels of CaV3.1 in the embryonic period were transiently decreased during the perinatal period and increased at postnatal day 11. We then pharmacologically blocked T-type calcium channels to determine the effects in neuronal cells. The blockade of T-type calcium channels reduced cell viability, and induced apoptotic cell death in NPCs but not in differentiated astrocytes. Furthermore, blocking T-type calcium channels rapidly reduced AKT-phosphorylation (Ser473) and $GSK3{\beta}$-phosphorylation (Ser9). Our results suggest that T-type calcium channels play essential roles in maintaining NPC viability, and T-type calcium channel blockers are toxic to embryonic neural cells, and may potentially be responsible for neurodevelopmental disorders.

Nanotube-based Dye-sensitized Solar Cells

  • Kim, Jae-Yup;Park, Sun-Ha;Choi, Jung-Woo;Shin, Jun-Young;Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.71-71
    • /
    • 2011
  • Dye-sensitized solar cells (DSCs) have drawn great academic attention due to their potential as low-cost renewable energy sources. DSCs contain a nanostructured TiO2 photoanode, which is a key-component for high conversion efficiency. Particularly, one-dimensional (1-D) nanostructured photoanodes can enhance the electron transport for the efficient collection to the conducting substrate in competition with the recombination processes. This is because photoelectron colletion is determined by trapping/detrapping events along the site of the electron traps (defects, surface states, grain boundaries, and self-trapping). Therefore, 1-D nanostructured photoanodes are advantageous for the fast electron transport due to their desirable features of greatly reduced intercrystalline contacts with specified directionality. In particular, anodic TiO2 nanotube (NT) electrodes recently have been intensively explored owing to their ideal structure for application in DSCs. Besides the enhanced electron transport properties resulted from the 1-D structure, highly ordered and vertically oriented nanostructure of anodic TiO2 NT can contribute additional merits, such as enhanced electrolyte diffusion, better interfacial contact with viscous electrolytes. First, to confirm the advantages of 1-D nanostructured material for the photoelectron collection, we compared the electron transport and charge recombination characteristics between nanoparticle (NP)- and nanorod (NR)-based photoanodes in DSCs by the stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). We confirmed that the electron lifetime of the NR-based photoanode was much longer than that of the NP-based photoanode. In addition, highly ordered and vertically oriented TiO2 NT photoanodes were prepared by electrochemical anodization method. We compared the photovoltaic properties of DSCs utilizing TiO2 NT photoanodes prepared by one-step anodization and two-step anodization. And, to reduce the charge recombination rate, energy barrier layer (ZnO, Al2O3)-coated TiO2 NTs also applied in DSC. Furthermore, we applied the TiO2 NT photoanode in DSCs using a viscous electrolyte, i.e., cobalt bipyridyl redox electrolyte, and confirmed that the pore structure of NT array can enhance the performances of this viscous electrolyte.

  • PDF

Dual-frequency Capacitively Coupled Plasma-enhanced Chemical Vapor Deposition System for Solar Cell Manufacturing

  • Gwon, Hyeong-Cheol;Won, Im-Hui;Sin, Hyeon-Guk;Rehman, Aman-Ur;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.310-311
    • /
    • 2011
  • Dual-frequency (DF) capacitively coupled plasmas (CCP) are used to separately control the mean ion energy and flux at the electrodes [1]. This separate control in capacitively coupled radio frequency discharges is one of the most important issues for various applications of plasma processing. For instance, in the Plasma Enhanced Chemical Vapor Deposition processes such as used for solar cell manufacturing, this separate control is most relevant. It principally allows to increase the ion flux for high deposition rates, while the mean ion energy is kept constant at low values to prevent highly energetic ion bombardment of the substrate to avoid unwanted damage of the surface structure. DF CCP can be analyzed in a fashion similar to single-frequency (SF) driven with effective parameters [2]. It means that DF CCP can be converted into SF CCP with effective parameters such as effective frequency and effective current density. In this study, comparison of DF CCP and its converted effective SF CCP is carried out through particle-in-cell/Monte Carlo (PIC-MCC) simulations. The PIC-MCC simulation shows that DF CCP and its converted effective SF CCP have almost the same plasma characteristics. In DF CCP, the negative resistance arises from the competition of the effective current and the effective frequency [2]. As the high-frequency current increases, the square of the effective frequency increases more than the effective current does. As a result, the effective voltage decreases with the effective current and it leads to an increase of the ion flux and a decrease of the mean ion energy. Because of that, the negative resistance regime can be called the preferable regime for solar cell manufacturing. In this preferable regime, comparison of DF (13.56+100 or 200 MHz) CCP and SF (60 MHz) CCP with the same effective current density is carried out. At the lower effective current density (or at the lower plasma density), the mean ion energy of SF CCP is lower than that of DF CCP. At the higher effective current density (or at the higher plasma density), however, the mean ion energy is lower than that of SF CCP. In this case, using DF CCP is better than SF CCP for solar cell manufacturing processes.

  • PDF

Field Test and Performance Verification of On-board Oriented Train Control System (차상중심 열차제어시스템의 현장시험을 통한 성능검증)

  • Baek, Jong-Hyen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5513-5521
    • /
    • 2015
  • There is an operational efficiency problem about wayside equipment applied to the domestic low-density branch as the equipment has been installed and operated similarly in the mainline. On-board oriented train control system, which has been developed for train safety and operation efficiency, ensures safe train operation without expensive ground control signal devices. Such system consists of on-board control system, wayside control system, and local control system. In this paper, the details of tests such as suitability test, communication test, and interface test are described by installing the on-board control system and wayside control system in field. Installation tests include checking power, voltage, cable connection, LED status, etc. Field applicability of the developed system is also verified through the dynamic operation tests with diverse scenarios, which are performed on the virtual line similar to the real environment including switch machine and level crossing gate. Dynamic operation tests were conducted for total 7 scenarios, and several tests were repeated for each scenario. The elapsed time for each operation was computed by analyzing main process log, and we could check that each operation was accomplished within several seconds. Furthermore, the developed system was verified through field test with an accredited institute, and testing certificates were issued.

Electrical Properties of ITO and ZnO:Al Thin Films and Brightness Characteristics of PDP Cell with ITO and ZnO:Al Transparent Electrodes (ITO와 ZnO:Al 투명전도막의 전기적 특성 및 PDP 셀의 휘도 특성)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.6-13
    • /
    • 2006
  • Tin doped indium oxide(ITO) and Al doped zinc oxide(ZnO:Al) films, which are widely used as a transparent conductor in optoelectronic devices, were prepared by using the capacitively coupled DC magnetron sputtering method. ITO and ZnO:Al films with the optimum growth conditions showed each resistivity of $1.67{\times}10^{-3}[{\Omega}-cm],\;2.2{\times}10^{-3}[{\Omega}-cm]$ and transmittance of 89.61[%], 90.88[%] in the wavelength range of the visible spectrum. The two types of 5 inch-PDP cells with ZnO:Al and ITO transparent electrodes were made under the same manufacturing conditions. The PDP cell with ZnO:Al film was optimally operated in the mixing gas rate of Ne(base)-Xe(8[%]), and at gas pressure of 400[Torr]. It also shows the average measured brightness of $836[cd/m^2]$ at voltage range of $200{\sim}300$[V]. Luminous efficiency, one of the key parameter for high brightness and low power consumption, ranges from 1.2 to 1.6[lm/W] with increasing frequency of ac power supplier from 10 to 50[Khz]. The brightness and luminous efficiency are lower than those with ITO electrode by about 10[%]. However, these values are considered to be enough for the normal operation of PDP TV.

Surface Electrode Modification and Improved Actuation Performance of Soft Polymeric Actuator using Ionic Polymer-Metal Composites (이온성고분자-금속복합체를 이용한 유연고분자 구동체의 표면특성 개선과 구동성 향상)

  • Jung, Sunghee;Lee, Myoungjoon;Song, Jeomsik;Lee, Sukmin;Mun, Museoung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.527-532
    • /
    • 2005
  • Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in air and water. The polymeric electrolyte actuator consists of a thin and porous membrane and metal electrodes plated on both faces, in impregnation electro-plating method. The response and actuation of actuator are governed. Among many factors governing the activation and response of IPMC actuator, the surface electrode plays an important role. In this study, the well-designed modification of electrode surface was carried out in order to improve the chemical stability well as electromechanical characteristics of the IPMC actuator. We employed Ion Beam Assisted Deposition (IBAD) method to prepare the topologically homogeneous thin surface electrode. After roughing the surface of Nafion membrane in order to get a larger surface area, the IPMC was prepared by impregnation for electro-plating and re- coating on the surface through traditional chemical deposition, followed by an additional surface treatment with high conductive metals with IBAD. It was observed that our IPMC specimen shows the enhanced surface electrical properties as well as the improved actuation and response characteristics under applied electric field.