• Title/Summary/Keyword: Low-velocity impact damage

Search Result 118, Processing Time 0.024 seconds

Impact Property of S-2 Glass Woven Composites with Different Matrices and Stitching (S-2 유리섬유 평직복합재의 기지재료 및 스티칭에 따른 충격 특성 비교)

  • Byeon, Jun-Hyeong;Hwang, Byeong-Seon;Eom, Mun-Gwang;Lee, Jeong-Hun;Nam, Won-Sang;Song, Seung-Uk;Lee, Chang-Hun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.31-34
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process has been utilized for providing through-thickness reinforcements. 2D prefonl1S were stacked with S-2 glass plain weave, and 3D preforms were fabricated using the stitching process. For the matrix system, epoxy and phenol resins were considered. To examine the damage resistance performance the low velocity drop weight impact test has been carried out, and the impact damage was examined by scanning image. CAI (Compressive After Ih1paet) tests were also conducted to evaluate residual compressive strength. Compared with 2D epoxy composites, 2D phenol composites showed drastic reduction in the compressive strength prior to impact because of the higher contents of voids. The damage area of 2D phenol composites were also larger than that of 2D epoxy composites. However, by introducing the stitching, the damage area of 3D phenol composites was reduced by 60%, while the CAI strength improvement was negligible.

  • PDF

Direct Numerical Simulation of Composite laminates Under low velocity Impact (저속충격을 받는 적층복합재료 평판의 직접 수치모사)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. But it is well known that the conventional approach based on the homogenization has the limit in description of damage. The work reported here is an effort in getting better predictions of dynamic behavior and damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials are investigated and compared with the results of the homogenized model which has been used in the conventional approach to impact analysis. Also the multiscale model based on DNS concept is developed in order to enhance the effectiveness of impact analysis, and we present the results of multiscale analysis considering micro and macro structures simultaneously.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Impact Behavior of Fiber/Metal Laminates (FMLs) under Low Velocity (섬유/금속 적층판의 저속 충격 거동)

  • Shi, Yu;Kim, Seung-Hyun;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • The Fiber/Metal Laminates (FMLs) have been developed as a new composite material for aerospace application to reduce weight and improve damage tolerance. In this study, firstly FMLs were manufactured and the tensile test was performed to investigate the mechanical properties of FMLs. Furthermore, impact behavior of the low velocity on FMLs which consisted of different types of aluminum or fiber/epoxy layers was tested by the drop weight impact tester based on the different impact energy conditions. The load-time and energy-time curves were employed to evaluate the impact performance of different specimens. Moreover, finite element analysis (FEA) was also performed to simulate the tensile test and impact behavior of FMLs under the same conditions with the tests and good agreements have been obtained between the FEA predictions and experimental results.

Impact Damage Detection in a Composite Stiffened Panel Using Built-in Piezoelectric Active Sensor Arrays (배열 압전 능동 센서를 이용한 복합재 보강판의 충격 손상 탐지)

  • Park, Chan-Yik;Cho, Chang-Min
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.21-27
    • /
    • 2007
  • Low-velocity impact damage in a composite stiffened panel was detected using built-in piezoelectric active sensor arrays. Using these piezoelectric active sensors, various diagnostic signals were generated to propagate Lamb waves through the structure and the responses were picked up to detect changes in the structure's vibration signature due to the damage. Three algorithms - ADI(Active Damage Interrogation), TD RMS (Time Domain Root Mean Square) and STFT (Short Time Fourier Transform) - were examined to express the features of the signal changes as one damage index. From damage detecting tests, two impact induced delaminations were detected and the location was estimated with the algorithms and diagnostic signals.

Effect of Shear Wave Velocity on Seismic Response of Low- and Mid-Rise Reinforced Concrete Frames (전단파 속도가 중저층 철근콘크리트 구조물의 지진 응답에 미치는 영향)

  • Kim, Minsun;Lee, Chang Seok;Kim, Byungmin;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.249-255
    • /
    • 2024
  • Strong ground motions at specific sites can cause severe damage to structures. Understanding the influence of site characteristics on the dynamic response of structures is crucial for evaluating their seismic performance and mitigating the potential damage caused by site effects. This study investigates the impact of the average shear wave velocity, as a site characteristic, on the seismic response of low-to-medium-rise reinforced concrete buildings. To explore them, one-dimensional soil column models were generated using shear wave velocity profile from California, and nonlinear site response analyses were performed using bedrock motions. Nonlinear dynamic structural analyses were conducted for reinforced concrete moment-resisting frame models based on the regional information. The effect of shear wave velocity on the structural response and surface ground motions was examined. The results showed that strong ground motions tend to exhibit higher damping on softer soils, reducing their intensity, while on stiffer soils, the ground motion intensity tends to amplify. Consequently, the structural response tended to increase on stiffer soils compared to softer soils.

Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar (계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Choe, Su-Yong;Seo, Chang-Min;Jang, Sun-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.

Evaluation of Residual Strength of CFRP Pressure Vessel After Low Velocity Impact (저속 충격 하중을 받은 탄소섬유강화 복합재 압력용기의 잔류강도 저하 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Kim, Hyung-Geun;Hwang, Tae-Kyung
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • In this paper, the low velocity impact characteristics of filament winding CFRP pressure vessel was investigated using numerical and experimental methods. The cylinder part of CFRP vessel was impacted using triangular shape impactor which simulated the sharp edge of dropping tools and impact response behavior of CFRP was reviewed. The mechanical behavior, such as deformation and stress distribution, were also predicted by explicit finite element method and the validity of the model was investigated. For the quantitative evaluation of the residual strength of the pressure vessel after impact, a series of the ring specimens was cut from the impacted vessel and its burst pressure was measured by hydraulic pressure hoop tension test. As the results, the relationship between the residual strength degradation and the impact energy was successively obtained and a useful methodology to evaluate quantitatively the impact damage tolerance of CFRP pressure vessel was established.