• Title/Summary/Keyword: Low-temperature growth

Search Result 2,045, Processing Time 0.031 seconds

Water-Assisted Synthesis of Carbon Nanotubes at Low Temperature and Low Pressure (물을 첨가한 탄소나노튜브의 저온 저압 합성)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.395-395
    • /
    • 2008
  • Water-assisted synthesis of carbon nanotubes (CNTs) has been intensively studied in recent years, reporting that water vapor enhances the activity and lifetime of metal catalyst for the CNT growth. While most of these studies has been focused on the supergrowth of CNTs at high temperature, rarely has the similar approach been made for the CNT synthesis at low temperature. Since the metal catalyst are much less active at lower temperature, we expect that the addition of water vapor may increase the activity of catalyst more largely at lower temperature. We synthesized multi-walled CNTs at temperature as low as $360^{\circ}C$ by introducing water vapor during growth. The water addition caused CNTs to grow ~3 times faster. Moreover, the water-assisted growth prolonged the termination of CNT growth, implying the enhancement of catalyst lifetime. In general, a thinner catalyst layer is likely to produce smaller-diameter, longer CNTs. In a similar manner, the water vapor had a greater effect on the growth of CNTs for a smaller thickness of catalyst in this study. To figure out the role of process gases, CNTs were grown in the first stage and then exposed to each of process gases in the second stage. It was shown that water vapor and hydrogen did not etch CNTs while acetylene led to the additional growth of CNTs even faster in the second stage. As-grown CNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy.

  • PDF

Effects of Low Air Temperature and Low Radiation Conditions on Yield and Quality of Hot Pepper at the Early Growth Stage (생육 초기의 저온·저일조가 고추의 수량과 품질에 미치는 영향)

  • Wi, Seung Hwan;Lee, Hee Ju;Yu, In Ho;Jang, Yoon Ah;Yeo, Kyung Hwan;An, Se Woong;Lee, Jin Hyong;Kim, Sung Kyeom
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.989-996
    • /
    • 2020
  • This study was conducted to determine the effect of low temperature and low radiation conditions on the yield and quality of hot pepper at an early growth stage in Korea. In plastic greenhouses, low temperature, low temperature with covered shading treatments were set 17 to 42 days after transplanting. The pepper growing degree days decreased by 5.5% due to the low temperature during the treatment period. Radiation decreased by 74.7% due to the covered shading. After commencing treatments, pepper plant growth decreased with low temperature and low radiation. Analysis of the yield showed that the first harvest was delayed by low radiation. The cumulative yields of 119 days after transplanting were 1,956, 2,171, and 2,018 g/㎡ for control, low temperature, and low temperature with low radiation respectively. Capsaicin and dihydrocapsaicin concentrations in pepper fruit decreased with low temperature and low radiation. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of photosynthesis. Results showed that the maximum photosynthetic rate, Vcmax (maximum carboxylation rate), J (electric transportation rate), and TPU (triose phosphate utilization) decreased at low temperatures; the maximum photosynthetic rate, J, and gm (dark respiration rate) were reduced by shading. These results indicate that low temperature and low radiation can retard early growth, yield, and quality, but these can also be recovered 119 days after planting. Based on the results, the yield and quality of pepper can recover from abiotic stresses with proper cultivation.

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • Hwang, Woon-Ha;Kang, Jea Ran;Baek, Jung-Sun;An, Sung-Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Lee, Hyen-Seok;Yun, Jong-Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

Influence of Abnormally Low Temperatures on Growth, Yield, and Biologically Active Compounds of Strawberry (이상 저온조건이 딸기의 생육, 수량 및 생리활성 성분에 미치는 영향)

  • Lee, Gyu-Bin;Choe, Yun-Ui;Park, Eun-Ji;Wang, Ziyu;Li, Mei;Li, Ke;Park, Young-Hoon;Choi, Young-Whan;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.381-392
    • /
    • 2017
  • The present study aimed to investigate the effects of low temperature on the growth, yield, quality, and biologically active compounds of strawberry and obtain basic information for developing a technology for stable growth of strawberry in greenhouses. Growth of strawberry, including leaf number, area, and length, plant height, and dry weight was better at the optimum growth temperature of $20^{\circ}C$ than at a lower temperature of $15^{\circ}C$. At the low temperature of $15^{\circ}C$, the cultivar 'Maehyang' was more tolerant and displayed better growth rate than 'Seolhyang'. At $15^{\circ}C$, the fruit production per week and fruit weight was lower than that at $20^{\circ}C$. In contrast, fruit length and diameter were not significantly different between the two growth temperatures. Growth temperature also did not affect the fruit color index, Hunter L, a, b value, or fruit firmness. However, the sugar content of strawberries grown at $15^{\circ}C$ was higher by 0.8 and 1.5 Brix for 'Seolhyang' and 'Maehyang', respectively, than of those grown at $20^{\circ}C$. There was no difference in the content of fisetin, a biologically active compound, for 'Seolhyang' at both growth temperatures, however, the fisetin content of 'Maehyang' was higher at $20^{\circ}C$ than at $15^{\circ}C$. Cinchonine and ellagic acid content of 'Seolhyang' was higher at $20^{\circ}C$ than at $15^{\circ}C$, whereas that of 'Maehyang' was higher at $15^{\circ}C$ than at $20^{\circ}C$. Quercetin content showed no significant differences with respect to growth temperature, however, it tended to increase at $20^{\circ}C$. The cinnamic acid content of 'Seolhyang' was higher at $15^{\circ}C$ than at $20^{\circ}C$, whereas that of 'Maehyang' increased at $20^{\circ}C$. Collectively, the biologically active compounds of strawberry were affected by growth temperature. Moreover, the content of these compounds tended to increase at $20^{\circ}C$, the optimum growth temperature, rather than at the sub-optimal growth temperature of $15^{\circ}C$.

The Effect of Temperature on Fatigue Fracture in Pressure Vessel Steel at Low Temperature (저온 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • Park, Keyung-Dong;Ha, Keyung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.359-365
    • /
    • 2002
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C,\;-30^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C,\;-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to tile extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

Causes of Cold Damage of Rice Plant and Its Control 1. Effects of Temperature on the Growth and Absorption of Mineral Nutrients (수도냉해의 발생기구와 그의 대책에 관한 연구 제1보 수도의 생장과 무기양분흡수에 미치는 온도의 영향)

  • 임형빈
    • Journal of Plant Biology
    • /
    • v.17 no.4
    • /
    • pp.31-37
    • /
    • 1974
  • Seedlings of Nongbaek representing strong cold tolerant variety of rice plant, Jinheung of medium variety and Tongil of weak variety were used respectively for the present study. These seedlings were water cultured in phytotron which maintained at the daytime and night temperature of 30-$25^{\circ}C$, 20-2$0^{\circ}C$, 20-15$^{\circ}C$ and 15-1$0^{\circ}C$. The growth rate of plant height, tillering rate, increase in dry weight and absorption pattern of important mineral nutrients at their early growth stage under each temperature conditions were observed. Generally, it appeared that Nongbaek was more active in the growth of plant height than Jinheung, and Jinheung was more active than Tongil under low temperature condition. The tillering rate of these three varieties was equally rapid while it was decreased in the order of weak cold tolerant variety, such as Tongil, Jinheung and Nongbaek as the temperature declined gradually. The dry weigh tincreasing curve showed almost the same pattern in the varieties at the treatment of each temperature. Under low temperature conditions, Nongbaek showed higher absorption rate of N per dry weight and higher absorption amount of per plant body, Jinheung followed and Tongil was the lowest. The absorption amount of P2O5 increased in the top part compared with the roots as temperature rose and decreased as temperature declined. There seemed to be no difference of absorption among the varieties which have different cold tolerance each other. Under low temperature the absorption rate of K per dry weight was high, as a whole, especially Nongbaek was markedly higher than the other two. The absorption rate of Ca, Mg and Fe was also equally high in all varieties under low temperature and Nongbaek showed a more absorptive tendency in the absorption amount under low temperature.

  • PDF

Direct Growth of Graphene at Low Temperature for Future Device Applications

  • Kim, Bum Jun;Nasir, Tuqeer;Choi, Jae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.203-223
    • /
    • 2018
  • The development of two-dimensional graphene layers has recently attracted considerable attention because of its tremendous application in various research fields. Semi-metal materials have received significant attention because of their excellent biocompatibility as well as distinct physical, chemical, and mechanical properties. Taking into account the technical importance of graphene in various fields, such as complementary metal-oxide-semiconductor technology, energy-harvesting and -storage devices, biotechnology, electronics, light-emitting diodes, and wearable and flexible applications, it is considered to be a multifunctional component. In this regard, material scientists and researchers have primarily focused on two typical problems: i) direct growth and ii) low-temperature growth of graphene. In this review, we have considered only cold growth of graphene. The review is divided into five sections. Sections 1 and 2 explain the typical characteristics of graphene with a short history and the growth methods adopted, respectively. Graphene's direct growth at low temperatures on a required substrate with a well-established application is then precisely discussed in Sections 3 and 4. Finally, a summary of the review along with future challenges is described in Section 5.

Enhancement of Plant Growth and Suppression of Damping-off of Cucumber by Low Temperature Growing Pseudomonas fluorescens Isolates (저온 생장성 Pseudomonas fluorescens M45와 MC07을 이용한 오이의 생육촉진과 모잘록병의 방제)

  • 염주립;박창석
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.252-257
    • /
    • 1995
  • Growth rates of the low temperature growing isolates, Pseudomonas fluorescens M45 and MC07, reached maximum stationary phase within 50 hrs at the low temperature, 4$^{\circ}C$. But an ordinary biocontrol agent P. putida Pf3 did not reach logarithmic growth phase until 80 hrs. The culture filtrates of M45 and MC07 significantly inhibited the mycelial growths of Pythium ultimum, Rhizoctonia solani and Phytophthora capsici. Detached cotyledons of cucumber grown on Murashige and Skoog agar medium were much enhanced in their growth, compared to those without the filtrates. Population densities of M45 and MC07 in the rhizosphere at 14$^{\circ}C$ were more stable than at 27$^{\circ}C$. When M45 and MC07 were treated into soil, the population density of MC07 continuously increased up to 9 days after treatment, and sustained the initial inoculum density up to 60 days. Cucumber damping-offs caused by P. ultimum and R. solani were significantly reduced by applying M45 as seed-inoculant and by soil treatment with MC07. The combined treatment of M45 and MC07 provided greater effect in reducing the disease incidence than that obtained by single treatments.

  • PDF

Time Evolution of a High-temperature GaN Epilayer Grown on a Low-temperature GaN Buffer Layer using a Low-pressure MOCVD

  • Chang, Kyung-Hwa;Cho, Sung-Il;Kwon, Myoung-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 2006
  • In this paper, the time evolution of undoped GaN epilayers on a low-temperature GaN buffer layer grown on c-plane sapphire at a low pressure of 300 Torr was studied via a two-step growth condition in a horizontal MOCVD reactor. As a function of the growth time at a high-temperature, the surface morphology, structural quality, and optical and electrical properties were investigated using atomic force microscopy, high-resolution x-ray diffraction, photoluminescence, and Hall effect measurement, respectively. The root-mean-square roughness showed a drastic decrease after a certain period of surface roughening probably due to the initial island growth. The surface morphology also showed the island coalescence and the subsequent suppression of three-dimensional island nucleation. The structural quality of the GaN epilayer was improved with increasing growth time considering the symmetrical (002) and asymmetrical (102) rocking curves. The variations of room-temperature photoluminescence, background carrier concentration, and Hall mobility were measured and discussed.

The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/70 Pressure Vessel Steel at Low Temperature (SA516/70 압력용기 강의 저온 피로균열 진전 속도에 미치는 응력비의 영향)

  • 박경동;김정호;최병국;임만배
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $-60^{\circ}C$,$-80^{\circ}C$ and $-100^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF