• Title/Summary/Keyword: Low-temperature Design

Search Result 1,404, Processing Time 0.029 seconds

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.

Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area (호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구)

  • Jeong, Chan-Ho;Hur, Hyun-Sung;Nagao, Keisuke;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.635-649
    • /
    • 2007
  • Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.

Performance assessment of an urban stormwater infiltration trench considering facility maintenance (침투도랑 유지관리를 통한 도시 강우유출수 처리 성능 평가)

  • Reyes, N.J. D.G.;Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.424-431
    • /
    • 2018
  • Stormwater runoff containing considerable amounts of pollutants such as particulates, organics, nutrients, and heavy metals contaminate natural bodies of water. At present, best management practices (BMP) intended to reduce the volume and treat pollutants from stormwater runoff were devised to serve as cost-effective measures of stormwater management. However, improper design and lack of proper maintenance can lead to degradation of the facility, making it unable to perform its intended function. This study evaluated an infiltration trench (IT) that went through a series of maintenance operations. 41 monitored rainfall events from 2009 to 2016 were used to evaluate the pollutant removal capabilities of the IT. Assessment of the water quality and hydrological data revealed that the inflow volume was the most relative factor affecting the unit pollutant loads (UPL) entering the facility. Seasonal variations also affected the pollutant removal capabilities of the IT. During the summer season, the increased rainfall depths and runoff volumes diminished the pollutant removal efficiency (RE) of the facility due to increased volumes that washed off larger pollutant loads and caused the IT to overflow. Moreover, the system also exhibited reduced pollutant RE for the winter season due to frozen media layers and chemical-related mechanisms impacted by the low winter temperature. Maintenance operations also posed considerable effects of the performance of the IT. During the first two years of operation, the IT exhibited a decrease in pollutant RE due to aging and lack of proper maintenance. However, some events also showed reduced pollutant RE succeeding the maintenance as a result of disturbed sediments that were not removed from the geotextile. Ultimately, the presented effects of maintenance operations in relation to the pollutant RE of the system may lead to the optimization of maintenance schedules and procedures for BMP of same structure.

A Study on Relationship between Physical Elements and Tennis/Golf Elbow

  • Choi, Jungmin;Park, Jungwoo;Kim, Hyunseung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • Objective: The purpose of this research was to assess the agreement between job physical risk factor analysis by ergonomists using ergonomic methods and physical examinations made by occupational physicians on the presence of musculoskeletal disorders of the upper extremities. Background: Ergonomics is the systematic application of principles concerned with the design of devices and working conditions for enhancing human capabilities and optimizing working and living conditions. Proper ergonomic design is necessary to prevent injuries and physical and emotional stress. The major types of ergonomic injuries and incidents are cumulative trauma disorders (CTDs), acute strains, sprains, and system failures. Minimization of use of excessive force and awkward postures can help to prevent such injuries Method: Initial data were collected as part of a larger study by the University of Utah Ergonomics and Safety program field data collection teams and medical data collection teams from the Rocky Mountain Center for Occupational and Environmental Health (RMCOEH). Subjects included 173 male and female workers, 83 at Beehive Clothing (a clothing plant), 74 at Autoliv (a plant making air bags for vehicles), and 16 at Deseret Meat (a meat-processing plant). Posture and effort levels were analyzed using a software program developed at the University of Utah (Utah Ergonomic Analysis Tool). The Ergonomic Epicondylitis Model (EEM) was developed to assess the risk of epicondylitis from observable job physical factors. The model considers five job risk factors: (1) intensity of exertion, (2) forearm rotation, (3) wrist posture, (4) elbow compression, and (5) speed of work. Qualitative ratings of these physical factors were determined during video analysis. Personal variables were also investigated to study their relationship with epicondylitis. Logistic regression models were used to determine the association between risk factors and symptoms of epicondyle pain. Results: Results of this study indicate that gender, smoking status, and BMI do have an effect on the risk of epicondylitis but there is not a statistically significant relationship between EEM and epicondylitis. Conclusion: This research studied the relationship between an Ergonomic Epicondylitis Model (EEM) and the occurrence of epicondylitis. The model was not predictive for epicondylitis. However, it is clear that epicondylitis was associated with some individual risk factors such as smoking status, gender, and BMI. Based on the results, future research may discover risk factors that seem to increase the risk of epicondylitis. Application: Although this research used a combination of questionnaire, ergonomic job analysis, and medical job analysis to specifically verify risk factors related to epicondylitis, there are limitations. This research did not have a very large sample size because only 173 subjects were available for this study. Also, it was conducted in only 3 facilities, a plant making air bags for vehicles, a meat-processing plant, and a clothing plant in Utah. If working conditions in other kinds of facilities are considered, results may improve. Therefore, future research should perform analysis with additional subjects in different kinds of facilities. Repetition and duration of a task were not considered as risk factors in this research. These two factors could be associated with epicondylitis so it could be important to include these factors in future research. Psychosocial data and workplace conditions (e.g., low temperature) were also noted during data collection, and could be used to further study the prevalence of epicondylitis. Univariate analysis methods could be used for each variable of EEM. This research was performed using multivariate analysis. Therefore, it was difficult to recognize the different effect of each variable. Basically, the difference between univariate and multivariate analysis is that univariate analysis deals with one predictor variable at a time, whereas multivariate analysis deals with multiple predictor variables combined in a predetermined manner. The univariate analysis could show how each variable is associated with epicondyle pain. This may allow more appropriate weighting factors to be determined and therefore improve the performance of the EEM.

Human Thermal Sensation and Comfort of Beach Areas in Summer - Woljeong-ri Beach, Gujwa-eup, Jeju-si, Jeju Special Self-Governing Province - (여름철 해변지역의 인간 열환경지수 및 열쾌적성 - 제주특별자치도 제주시 구좌읍 월정리 해변 -)

  • Park, Sookuk;Sin, Jihwan;Jo, Sangman;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.100-108
    • /
    • 2016
  • The climatic index for tourism(CIT) has recently been advanced, which includes complete human energy balance models such as physiological equivalent temperature(PET) and universal thermal climate index(UTCI). This study investigated human thermal sensation and comfort at Woljung-ri Beach, Jeju, Republic of Korea, in spring and summer 2015 for landscape planning and design in beach areas. Microclimatic data measurements and human thermal sensation/comfort surveys from ISO 10551 were conducted together. There were 869 adults that participated. As a result, perceptual and thermal preference that consider only physiological aspects had high coefficients of determination($r^2$) with PET in linear regression analyses: 92.8% and 87.6%, respectively. However, affective evaluation, personal acceptability and personal tolerance, which consider both physiological and psychological aspects, had low $r^2s$: 60.0%, 21.1% and 46.4%, respectively. However, the correlations between them and PET were all significant at the 0.01 level. The neutral PET range in perceptual for human thermal sensation was $25{\sim}27^{\circ}C$, but a PET range less or equal to 20% dissatisfaction, which was recommended by ASHRAE Standard 55, could not be achieved in perceptual. Only PET ranges in affective evaluation and personal tolerance affected by both aspects were qualified for the recommendation as $21{\sim}32^{\circ}C$ and $17{\sim}37^{\circ}C$, respectively. Therefore, the PET range of $21{\sim}32^{\circ}C$ is recommended to be used for the human thermal comfort zone of beach areas in landscape planning and design as well as tourism and recreational planning. PET heat stress level ranges on the beach were $2{\sim}5^{\circ}C$ higher than those in inland urban areas of the Republic of Korea. Also, they were similar to high results of tropical areas such as Taiwan and Nigeria, and higher than those of western and middle Europe and Tel Aviv, Israel.

Natural Treatment of Wastewater from Industrial Complex in Rural Area by Subsurface Flow Wetland System (인공습지에 의한 농공단지 폐수처리)

  • Yoon, Chun-Gyeong;Lim, Yoong-Ho;Kim, Hyung-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.170-174
    • /
    • 1997
  • Constructed wetland system was studied to treat wastewater from industrial complex in rural area. Pilot plant at the Baeksuk Nongkong Danzi in Chunahn-City was used for field study. For the DO, the effluent concentration was higher than the influent concentration and it implies that natural reaeration supplies enough oxygen to the system. For the SS, the effluent concentration was consistently lower than the water quality standard even though the influent concentration varied significantly, which showed that SS was removed by the system effectively which is consist of soil and plants. For the BOD and COD, the average removal rate of them were 56% and 43%, respectively, therefore, the effluent concentration could not meet water quality standards when influent concentration was high. The removal rate of BOD and COD can be improved by supplemental treatment in addition to this system if necessary. For the T-N and T-P, the influent concentration of them were lower than the water quality standards than no further treatment was needed. Overall, the result showed that constructed wetland system is a feasible alternative for the treatment of wastewater from industrial complex in rural area. For actual application of this system, further study on design factors including loading rate, removal mechanism, and temperature effects is required to meet water quality standard consistently. Compared to existing systems, this system is quite competitive because it requires low capital cost, almost no energy and maintenance, and therefore, very cost effective.

  • PDF

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Study on the Environmental Factors and Symptoms of VDT Syndrome (VDT 증후군의 환경적 요인과 증상에 대한 연구)

  • Jeong, Seunghui;Lee, Seon Young;Eu, Sun Mi;Kim, Douk-Hoon;Lee, Eun-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.4
    • /
    • pp.65-69
    • /
    • 2009
  • Purpose: Recently incidence of VDT syndrome has gradually increased as extensive use of computers. VDT syndrome reported by VDT workers include musculoskeletal disorder, neuropsychiatric disoders and eye symptoms such as eye strain, tired eyes, irritation and blurred vision. The environmental factors of VDT syndrome include electromagnetic waves, size, brightness and lighting of computer screen, height of a monitor and a worktable, working hours, kind of task, distance between screen and workers, indoor humidity and temperature, indoor air contamination and ventilation. In this study, we investigated the environmental factors related to body symptoms and health effects included in VDT syndrome. Methods: Study subjects were total 120 persons (54 male, 66 female) with age from 19 to 28. We surveyed the body symptoms and physical discomfort when doing an activity in a short distance such as reading book or paper, computer work. The questionnaire included main body symptoms, self-consciousness symptoms of eye, satisfaction of working environment, pain of the wrist when using keyboard and mouse. Results: Most of people (70%) felt physical pain from long time work of computer, paper, electrical apparatus. They mainly complained pain of neck and low back (57.1%), eye (45.2%) and head (31%). With the environmental factors, 78.3% of the subjects complaint pain of eye from inappropriate illumination. Most of the symptoms included 'eye fatigue'(38.3%), 'dryness of eye'(31.9%) and 'blurred vision'(23.7%). Subjects in this study complained discomfort of their chairs and most of them experienced pain in the wrist when using keyboard or mouse. Conclusions: When people use electrical apparatus or work with paper, people would get their eye fatigue and feeling of physical fatigue because of not harmonizing various environmental factors such as light, space, posture, worktable with theirselves. Therefore, workers should develop preventive method such as self-control of adequate break time to avoid fatigue while VDT work. Work environment should be changed to ergonomic design for optimal visual environment to prevent musculoskeletal disorder through constant research.

  • PDF

CO2 Decomposition Characteristics of Activated(Fe1-xMnx)3O4-δ and (Fe1-xCox)3O4-δ (활성화된(Fe1-xMnx)3O4-δ과 (Fe1-xCox)3O4-δ의 이산화탄소 분해 특성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.219-226
    • /
    • 2013
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) has the capability of decomposing $CO_2$ proportional to the ${\delta}$-value at comparatively low temperature of $300^{\circ}C$. To enhance the $CO_2$ decomposition capability of $Fe_3O_{4-{\delta}}$, $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$ were synthesized and then reacted with $CO_2$. $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ powders having Fe to Co mixing ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 were synthesized by co-precipitation of $FeSO_4{\cdot}7H_2O$ and $CoSO_4{\cdot}7H_2O$ solutions with a $(NH_4)_2C_2O_4{\cdot}H_2O$ solution. The same method was used to synthesize $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ powders having Fe to Mn mixing ratios of 9:1, 8:2, 7:3, 6:4, 5:5 with a $MnSO_4{\cdot}4H_2O$ solution. The thermal decomposition of synthesized $Fe_{1-x}Co_xC_2O_4{\cdot}2H_2O$ and $Fe_{1-x}Mn_xC_2O_4{\cdot}2H_2O$ was analyzed in an Ar atmosphere with TG/DTA. The synthesized powders were heat-treated for 3 hours in an Ar atmosphere at $450^{\circ}C$ to produce activated powders of $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$ and $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$. The activated powders were reacted with a mixed gas (Ar : 85 %, $CO_2$ : 15 %) at $300^{\circ}C$ for 12 hours. The exhaust gas was analyzed for $CO_2$ with a $CO_2$ gas analyzer. The decomposition of $CO_2$ was estimated by measuring $CO_2$ content in the exhaust gas after the reaction with $CO_2$. For $(Fe_{1-x}Mn_x)_3O_{4-{\delta}}$, the amount of $Mn^{2+}$ oxidized to $Mn^{3+}$ increased as x increased. The ${\delta}$ value and $CO_2$ decomposition efficiency decreased as x increased. When the ${\delta}$ value was below 0.641, $CO_2$ was not decomposed. For $(Fe_{1-x}Co_x)_3O_{4-{\delta}}$, the ${\delta}$ value and $CO_2$ decomposition efficiency increased as x increased. At a ${\delta}$ value of 0.857, an active state was maintained even after 12 hours of reaction and the amount of decomposed $CO_2$ was $52.844cm^3$ per 1 g of $(Fe_{0.5}Co_{0.5})_3O_{4-{\delta}}$.

Effect of Seedling Age on Growth and Yield at Transplanting of Sorghum (Sorghum bicolor L. Moench) (수수 묘의 이식 시기가 생육 및 수량에 미치는 영향)

  • Jo, Su-Min;Jung, Ki-Youl;Kang, Hang-Won;Choi, Young-Dae;Lee, Jae-Saeng;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.50-56
    • /
    • 2016
  • Direct seeding of sorghum (Sorghum bicolor L. Moench) has a problem of low yield including poor establishment. This poor establishment results from poor quality seed, poor seedbed preparation, seedling pests, poor sowing technique and high soil temperature. This study sought to establish the age at which sorghum seedlings can be transplanted with minimal effects on grain yield. Transplants were raised in 128 nursery tray pot. Five seedling ages were established by transplanting at 10 (T10), 15 (T15), 20 (T20), 25 (T25) and 30 (T30) days after planting (DAP). The treatment combinations were arranged in a randomized complete block design and replicated three times with an individual plot size of $6{\times}5m^2$. Each plot had five ridges with a planting space of $0.60{\times}0.20m^2$ at one plants per stand. Results showed that seedling age on transplanting significantly affected growths and yields to sorghum after transplanting. Plant heights and diameters of transplants at T15 were longer than the other transplants. Conclusively, The advantages of this practice were better control of crop density and greater yields; either to fill gaps after emerging and thinning of crops or to compensate for a growth period that was too short for a complete crop cycle.