• Title/Summary/Keyword: Low-stress mechanical properties

Search Result 292, Processing Time 0.03 seconds

Numerical Study on Skin Burn Injury due to Flash Flame Exposure (돌발화염으로 인한 화상예측에 관한 수치해석적 연구)

  • Lee, Jun-Kyoung;Bang, Chang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.13-20
    • /
    • 2012
  • Many fire-fighters suffer from the burn injuries, and the severe burns are the most catastrophic injury a person can survive, resulting in pain, emotional stress, and tremendous economic costs. It is important to understand the physiology of burns for prevention from skin burns and a successful treatment of a burn patient. But a few researches have been presented because the complex physical phenomena of our inside body like non-linearity characteristics of human skin make them difficult. Thus in this study, thermal analyses of biological tissues exposed to a flash fire causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. The several previous models for skin thermo-physical properties were summarized, and the calculated values with those models of tissue injury were compared with the results obtained by the previous experiment for low heat flux conditions. The skin models with good agreement could be found. Also, the skin burn injury prediction results with the best model for high heat flux conditions by flash flame were suggested.

High Temperature Deformation Behavior of L12 Modified Titanium Trialuminides Doped with Chromium and Copper (크롬 및 구리로 치환한 L12 Titanium Trialuminides합금의 고온변형거동)

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.317-323
    • /
    • 2018
  • Crystal structure of the $L1_2$ type $(Al,X)_3Ti$ alloy (X = Cr,Cu) is analyzed by X-ray diffractometry and the nonuniform strain behavior at high temperature is investigated. The lattice constants for the $L1_2$ type $(Al,X)_3Ti$ alloys decrease in the order of the atomic number of the substituted atom X, and the hardness tends to increase. In a compressive test at around 473K for $Al_{67.5}Ti_{25}Cr_{7.5}$, $Al_{65}Ti_{25}Cr_{10}$ and $Al_{62.5}Ti_{25}Cu_{12.5}$ alloys, it is found that the stress-strain curves showed serration, and deformation rate dependence appeared. It is assumed that the generation of serration is due to dynamic strain aging caused by the diffusion of solute atoms. As a result, activation energy of 60-95 kJ/mol is obtained. This process does not require direct involvement. In order to investigate the generation of serrations in detail, compression tests are carried out under various conditions. As a result, in the strain rate range of this experiment, serration is found to occur after 470K at a certain critical strain. The critical strain increases as the strain rate increases at constant temperature, and the critical strain tends to decrease as temperature rises under constant strain rate. This tendency is common to all alloys produced. In the case of this alloy system, the serration at around 473K corresponds to the case in which the dislocation velocity is faster than the diffusion rate of interstitial solute atoms at low temperature.

Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process (이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발)

  • Park Hee-Cheon;Jeong Ho-Seung;Cho Jong-Rac;Lee Nak-Kyu;Oh Jung-Seok;Han Mvoung-Seoup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.

Anisotropic Behavior of Compacted Decomposed Granite Soils (다짐 화강풍화토의 비등방성 거동특성)

  • Ham Tae-Gew;Hyodo Masayuki;Ahn Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.5-12
    • /
    • 2005
  • In order to investigate the strength and deformation anisotropy of compacted decomposed granite soils, a series of unsaturated-drained triaxial compression tests were performed. The sample used in the study was decomposed granite soil from Shimonoseki in Yamaguchi prefecture. The sample had three different angles of the axial (major principal) direction to the sedimentation plane (compaction plane), 0, 45 and 90 degrees. The compression strain of specimens subjected to isotropic compression was strongly influenced by the sedimentation angle. In addition, the time dependence was independent of the sedimentation angle in relation to the deformation behavior during the secondary compression process. The effect of the sedimentation angle on the triaxial compression strength and deformation was clear with low confining stress. Moreover, it was recognized that although the sedimentation angle and preparation methods were different, the dilatancy rate was relative to the increment of strength due to dilatancy. Therefore, it may be concluded that the compacted specimen has anisotropic mechanical properties similar to those of sand with initial fabric anisotropy.

Investigation on Liquid Crystal Alignment Effects of SiNx Thin Film Irradiated by Ion Beam (이온 빔 조사된 SiNx 박막의 액정 배향 효과에 관한 연구)

  • Lee, Sang-Keuk;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jin-Woo;Kang, Dong-Hun;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.398-398
    • /
    • 2007
  • Most recently, the Liquid Crystal (LC) aligning capabilities achieved by ion beam exposure on the diamond-like carbon (DLC) thin film layer have been successfully studied. The DLC thin films have a high mechanical hardness, a high electrical resistance, optical transparency and chemical inertness. Nitrogen doped Diamond Like Carbon (NDLC) thin films exhibit properties similar to those of the DLC films and better thermal stability than the DLC films because C:N bonding in the NDLC film is stronger against thermal stress than C:H bonding in the DLC thin films. Moreover, our research group has already studied ion beam alignment method using the NDLC thin films. The nematic liquid crystal (NLC) alignment effects treated on the SiNx thin film layers using ion beam irradiation for three kinds of N rations was successfully studied for the first time. The SiNx thin film was deposited by plasma-enhanced chemical vapor deposition (PECVD) and used three kinds of N rations. In order to characterize the films, the atomic force microscopy (AFM) image was observed. The good LC aligning capabilities treated on the SiNx thin film with ion beam exposure for all N rations can be achieved. The low pretilt angles for a NLC treated on the SiNx thin film with ion beam irradiation were measure.

  • PDF

Comparison of Vibrational Displacements Generated by Different Types of Surface Source in a Soft Tissue (여러 종류의 표면 진동원에 대한 연조직에서의 진동 변위 비교)

  • Park, Jeong Man;Kwon, Sung-Jae;Jeong, Mok-Kun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.469-483
    • /
    • 2012
  • The propagation characteristics of a mechanical wave in human soft tissue depend on its elastic properties. Investigation of these propagation characteristics is of paramount importance because it may enable us to diagnose cancer or tumor from the vibration response of the tissue. This paper investigates and compares displacement patterns generated in soft tissue due to several forms of low-frequency vibration sources placed on a surface. Among vibration sources considered are a normal load, tangential load, and antiplane shear load. We derive analytical expressions for displacements in viscoelastic single layers, and calculate displacement patterns in half space and infinite plate type tissue. Also, we simulate the vibration response of a finite-sized tissue using finite element method. The effects of the type of stress, the size and frequency of vibration sources, and medium boundaries on displacement patterns are discussed.

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.

Corrosion Characteristics of Cell-Covered Ternary Ti-Nb-Ta Alloy for Biomaterials

  • Kim, W.G.;Yu, J.W.;Choe, H.C.;Ko, Y.M.;Park, G.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.62-67
    • /
    • 2009
  • Ti and Ti-alloys have good biocompatibility, appropriate mechanical properties and excellent corrosion resistance. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus (100 GPa) than cortical bone (20 GPa). Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. The electrochemical behavior of surface-modified and MC3T3-E1 cell-cultured Ti-30(Nb,Ta) alloys with low elastic modulus have been investigated using various electrochemical methods. Surfaces of test samples were treated as follows: $0.3{\mu}m$ polished; $25{\mu}m$, $50{\mu}m$ and $125{\mu}m$ sandblasted. Specimen surfaces were cultured with MC3T3-E1 cells for 2 days. Average surface roughness ($R_a$) and morphology of specimens were determined using a surface profilometer, OM, and FE-SEM. Corrosion behavior was investigated using a potentiostat(EG&G PARSTAT 2273), and electrochemical impedance spectroscopy was performed (10 mHz to 100 kHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructures of the Ti-30(Ta,Nb) alloys had a needle-like appearance. The $R_a$ of polished Ti-30Ta and Ti-30Nb alloys was lower than that of the sandblasted Ti alloy. Cultured cells displayed round shapes. For polished alloy samples, cells were well-cultured on all surfaces compared to sandblasted alloy samples. In sandblasted and cell-cultured Ti-30(Nb,Ta) alloy, the pitting potential decreased and passive current density increased as $R_a$ increased. Anodic polarization curves of cell-cultured Ti alloys showed unstable behavior in the passive region compared to non-cell-cultured alloys. From impedance tests of sandblasted and cell-cultured alloys, the polarization resistance decreased as $R_a$ increased, whereas, $R_a$ for cell-cultured Ti alloys increased compared to non-cell-cultured Ti alloys.

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.

Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials (TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성)

  • Kim, Y.U.;Cho, J.Y.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.