• Title/Summary/Keyword: Low-speed wind tunnel

Search Result 103, Processing Time 0.026 seconds

Parametric Studies and Performance Analysis of a Biplane Micro Air Vehicle

  • Maqsood, Adnan;Go, Tiauw Hiong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.229-236
    • /
    • 2013
  • This paper presents the experimental investigation of a biplane micro air vehicle. The effects of geometric parameters, gap, stagger, and decalage angle are investigated at low Reynolds number (~150,000) in a low-speed wind tunnel. A rigid flat plate with an aspect ratio of one and square planform shape is used to evaluate all three geometric parameters. The side dimension of the single flat plate is 0.15 m. The goal is to find an optimal biplane configuration that should exceed monoplane performance by generating high lift and flying as slow as possible, in order to capture high-quality visual recordings. This configuration will directly help to fly at a lower velocity and to make tighter turns that are advantageous in restricted environments. The results show that the aerodynamic performance of the biplane MAV is significantly enhanced through the combination of gap and stagger effects. A performance comparison demonstrates the superiority of the optimal biplane configuration compared to a monoplane in cruise and glide phases. Moreover, no significant compromise is found for the range, endurance, and climb performance.

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.

An Experimental Study on the Lift and Drag Characteristics of a Wing with a Helical Ring Wing Tip (나선 고리형 날개끝을 가진 날개의 양항특성에 관한 실험적 연구)

  • Lim, J.H.;Lee, B.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.6 no.1
    • /
    • pp.7-20
    • /
    • 1998
  • A reduction of induced drag is an important problem in order to save fuels. In this study, the aerodynamic characteristics of wing tip devices to reduce induced drag, such as end plate, plain ring, helical ring wing tip device, was experimentally investigated in a low speed wind tunnel. The experimental results showed that the wing model with a helical ring wing tip device reduced a induced drag and increased lift-drag ratio.

  • PDF

Effect of building volume and opening size on fluctuating internal pressures

  • Ginger, John D.;Holmes, John D.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.361-376
    • /
    • 2008
  • This paper considers internal pressure fluctuations for a range of building volumes and dominant wall opening areas. The study recognizes that the air flow in and out of the dominant opening in the envelope generates Helmholtz resonance, which can amplify the internal pressure fluctuations compared to the external pressure, at the opening. Numerical methods were used to estimate fluctuating standard deviation and peak (i.e. design) internal pressures from full-scale measured external pressures. The ratios of standard deviation and peak internal pressures to the external pressures at a dominant windward wall opening of area, AW are presented in terms of the non-dimensional opening size to volume parameter, $S^*=(a_s/\bar{U}_h)^2(A_W^{3/2}/V_{Ie})$ where $a_s$ is the speed of sound, $\bar{U}_h$ is the mean wind speed at the top of the building and $V_{Ie}$ is the effective internal volume. The standard deviation of internal pressure exceeds the external pressures at the opening, for $S^*$ greater than about 0.75, showing increasing amplification with increasing $S^*$. The peak internal pressure can be expected to exceed the peak external pressure at the opening by 10% to 50%, for $S^*$ greater than about 5. A dominant leeward wall opening also produces similar fluctuating internal pressure characteristics.

An Investigation on the Surface Flow Characteristics of Ogive-cylinder using the Infrared Ray Thermogram 3D Mapping Technique (적외선 온도 측정 3차원 매핑 기법을 이용한 오자이브 실린더 표면 유동 특성 파악)

  • LEE, Jaeho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2018
  • IR thermography is a non-invasive method and used for the visualization of the surface temperature of the model. However, this technique only derives 2D results and not quantitative data. The goal of this study is to apply the 3D mapping technique for IR thermography. The wind tunnel model is an ogive-cylinder with a wind speed of 20 m/s ~ 80 m/s and the angle of attack ranging from $0^{\circ}$ to $90^{\circ}$. The real location of the model was made to correspond with the position of the IR image using the makers. Based on this result, quantitative results were obtained. The 3D mapping method was verified by comparing the separation point and the theoretical value.

Aerodynamic Forces Acting on Yi Sun-sin Bridge Girder According to Reynolds Numbers (레이놀즈수에 따른 이순신대교 거더에 작용하는 공기력의 변화)

  • Lee, Seung Ho;Yoon, Ja Geol;Kwon, Soon Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • The objective of present study is to investigate the sensitivity of aerostatic force coefficients of twin box girder of Yi Sun-sin Bridge according to the Reynolds numbers. This paper presents the 1:30 scale sectional model tests conducted at high speed wind tunnel in Korea Air Force Academy. Comparison with results at low Reynolds number obtained in KOCED Wind Tunnel Center in Chonbuk National University is also provide. The Reynolds number dependency of aerodynamic force coefficients were observed at present streamlined twin box girder. The drag coefficient revealed significant decrease of nearby 23% at supercritical region. The boundary layer trip strip was found to reduce the Reynolds number dependency of aerodynamic forces by fixing the location of flow transition.

A Study on Improvement of the Ablation Resistance of Two Types of the Carbon/Carbon Composites by HfC Coating (하프늄카바이드 코팅을 통한 2종형상의 탄소/탄소복합재의 내삭마성 향상연구)

  • Kang, Bo-Ram;Kim, Ho-Seok;Oh, Phil-Yong;Choi, Seong-Man
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.205-212
    • /
    • 2020
  • In this study, HfC was coated on two types of carbon/carbon composites coated with SiC by vacuum plasma spraying(VPS). The experiment was performed using a plasma wind tunnel with heat flux of 5.06 MW/㎡ for 120 s heat flux before and after the coating. The mass ablation rate was calculated through the mass change before and after the test, and the length change was measured by using calipers and high speed camera. The oxidation/ablation behavior were observed by FE-SEM with EDS analysis of the specimens cross section. The plasma wind tunnel test results showed that the coated specimens had low weight loss and length change, and high oxidation/ablation resistance. However, two types of the specimens tested under the same conditions were different in the ablation behavior and ablation rate, and it was evaluated that the cylindrical type had higher oxidation/ablation resistance.

High Lift Device Design Optimization and Wind Tunnel Tests (고양력장치 설계 최적화 및 풍동시험)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Cho, Tae-Hwan
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • In the present paper, a flap was optimized to maximize the lift. A 2-element fowler flap system was utilized for optimization with an initial shape of general aviation airfoil and a flap shape designed by Wentz. Response surface method and Hicks-Henne shape function were implemented for optimization. 2-D Navier-Stokes method was used to solve flow field around aGA(W)-1 airfoil with a fowler flap. Commercial programs including Visual-Doc, Gambit/Tgridand Fluent were used. Upper surface shape and the flap gap were optimized and lift for landing condition was improved considerably. The original and optimized flaps were tested in the KARI's 1-m low speed wind tunnel to examine changes in aerodynamic characteristics. For optimized flap tests, the similar trend to prediction could be seen but stall angle of attack was lower than what was expected. Also, less gap than optimized design delayed stall and produced better lift characteristics. This is believed to be the effect of turbulence model.

A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel (풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구)

  • Ui-Jin Hwang;Jae-Sang Park;Myeong-Kyu Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.45-55
    • /
    • 2023
  • This study conducted aeromechanics modeling and structural load analyses of Tilt Rotor Aeroacoustic Model (TRAM), a 25% scaled V-22 tiltrotor model used in wind tunnel tests. A rotorcraft comprehensive analysis code, CAMRAD II, was used. Analysis results of this study in low-speed forward flights were compared with DNW test and previous analysis results. Blade flap bending moments were in good agreement with measured data. Mean values and oscillatory loads for lead-lag bending and torsion moments were slightly different from measured data. However, when mean values were removed, results of structural loads for one rotor revolution were moderately compared with wind tunnel tests and previous analyses. Total forces and half peak-to-peak forces of the pitch link reasonably well matched with previous analysis results and measured data. Finally, harmonic magnitudes of blade structural loads were investigated.

Study for Reducing the Near Field Interference of Belly Sting Model Support with Fairing (페어링을 이용한 벨리 스팅 모형지지부의 직접 간섭효과 감소방안 연구)

  • Kim, Namgyun;Lee, Jaeho;Cha, Kyunghwan;Ko, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.753-763
    • /
    • 2020
  • A wind tunnel test of 29.7% scaled model of NASA Common Research Model with belly model support was performed in small low speed wind tunnel. The static aerodynamic forces and moments of CRM were measured with belly sting support configuration. Pitching moments of belly sting with various fairings were compared and small interference fairing shape was found. The belly sting model support interference and reducing effect of fairing shapes with CFD analysis.