• Title/Summary/Keyword: Low-power processor

Search Result 325, Processing Time 0.03 seconds

A Study on the MS-WP Cryptographic Processor for Wireless Security Transmission Network among Nodes of Water-Processing Measurement-Control-Equipment (수처리 계측제어설비 노드들 간의 무선 안전 전송을 위한 MS-WP 암호 프로세서에 관한 연구)

  • Lee, Seon-Keun;Yu, Chool;Park, Jong-Deok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.381-387
    • /
    • 2011
  • Measurement controller that acquire and control and observe data from scattering sensors is organic with central control room. Therefore, measurement controller is efficient wireless network than wire network. But, serious problem is happened in security from outside if use wireless network. Therefore, this paper proposed suitable MS-WP cryptographic system to measurement control wireless network to augment network efficiency of measure controller. Result that implement proposed MS-WP cryptographic system by chip level and achieve a simulation, confirmed that 130% processing rate increase and system efficiency are increased double than AES algorithm. Proposed MS-WP cryptographic system augments security and is considered is suitable to measurement controller because that low power is possible and the processing speed is fast.

Semantic Depth Data Transmission Reduction Techniques using Frame-to-Frame Masking Method for Light-weighted LiDAR Signal Processing Platform (LiDAR 신호처리 플랫폼을 위한 프레임 간 마스킹 기법 기반 유효 데이터 전송량 경량화 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1859-1867
    • /
    • 2021
  • Multi LiDAR sensors are being mounted on autonomous vehicles, and a system to multi LiDAR sensors data is required. When sensors data is transmitted or processed to the main processor, a huge amount of data causes a load on the transport network or data processing. In order to minimize the number of load overhead into LiDAR sensor processors, only semantic data is transmitted through data comparison between frames in LiDAR data. When data from 4 LiDAR sensors are processed in a static environment without moving objects and a dynamic environment in which a person moves within sensor's field of view, in a static experiment environment, the transmitted data reduced by 89.5% from 232,104 to 26,110 bytes. In dynamic environment, it was possible to reduce the transmitted data by 88.1% to 29,179 bytes.

Noise Characteristics of 64-channel 2nd-order DROS Gradiometer System inside a Poorly Magnetically-shielded Room (저성능 자기차폐실에서 64채널 DROS 2차 미분계 시스템의 잡음 특성)

  • Kim, J.M.;Lee, Y.H.;Yu, K.K.;Kim, K.;Kwon, H.;Park, Y.K.;Sasada, Ichiro
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • We have developed a second-order double relaxation oscillation SQUID(DROS) gradiometer with a baseline of 35 mm, and constructed a poorly magnetically-shielded room(MSR) with an aluminum layer and permalloy layers for magnetocardiography(MCG). The 2nd-order DROS gradiometer has a noise level of 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz inside the heavily-shielded MSR with a shielding factor of $10^3$ at 1 Hz and $10^4-10^5$ at 100 Hz. The poorly-shielded MSR, built of a 12-mm-thick aluminum layer and 4-6 permalloy layers of 0.35 mm thickness, is 2.4mx2.4mx2.4m in size, and has a shielding factor of 40 at 1 Hz, $10^4$ at 100 Hz. Our 64-channel second-order gradiometer MCG system consists of 64 2nd-order DROS gradiometers, flux-locked loop electronics, and analog signal processors. With the 2nd-order DROS gradiometers and flux-locked loop electronics installed inside the poorly-shielded MSR, and with the analog signal processor installed outside it, the noise level was measured to be 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz on the average even though the MSR door is open. This result leads to a low noise level, low enough to obtain a human MCG at the same level as that measured in the heavily-shielded MSR. However, filters or active shielding is needed fur clear MCG when there is large low-frequency noise from heavy air conditioning or large ac power consumption near the poorly-shielded MSR.

  • PDF

Novel Radix-26 DF IFFT Processor with Low Computational Complexity (연산복잡도가 적은 radix-26 FFT 프로세서)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Fast Fourier transform (FFT) processors have been widely used in various application such as communications, image, and biomedical signal processing. Especially, high-performance and low-power FFT processing is indispensable in OFDM-based communication systems. This paper presents a novel radix-26 FFT algorithm with low computational complexity and high hardware efficiency. Applying a 7-dimensional index mapping, the twiddle factor is decomposed and then radix-26 FFT algorithm is derived. The proposed algorithm has a simple twiddle factor sequence and a small number of complex multiplications, which can reduce the memory size for storing the twiddle factor. When the coefficient of twiddle factor is small, complex constant multipliers can be used efficiently instead of complex multipliers. Complex constant multipliers can be designed more efficiently using canonic signed digit (CSD) and common subexpression elimination (CSE) algorithm. An efficient complex constant multiplier design method for the twiddle factor multiplication used in the proposed radix-26 algorithm is proposed applying CSD and CSE algorithm. To evaluate performance of the previous and the proposed methods, 256-point single-path delay feedback (SDF) FFT is designed and synthesized into FPGA. The proposed algorithm uses about 10% less hardware than the previous algorithm.

An Application-Specific and Adaptive Power Management Technique for Portable Systems (휴대장치를 위한 응용프로그램 특성에 따른 적응형 전력관리 기법)

  • Egger, Bernhard;Lee, Jae-Jin;Shin, Heon-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.367-376
    • /
    • 2007
  • In this paper, we introduce an application-specific and adaptive power management technique for portable systems that support dynamic voltage scaling (DVS). We exploit both the idle time of multitasking systems running soft real-time tasks as well as memory- or CPU-bound code regions. Detailed power and execution time profiles guide an adaptive power manager (APM) that is linked to the operating system. A post-pass optimizer marks candidate regions for DVS by inserting calls to the APM. At runtime, the APM monitors the CPU's performance counters to dynamically determine the affinity of the each marked region. for each region, the APM computes the optimal voltage and frequency setting in terms of energy consumption and switches the CPU to that setting during the execution of the region. Idle time is exploited by monitoring system idle time and switching to the energy-wise most economical setting without prolonging execution. We show that our method is most effective for periodic workloads such as video or audio decoding. We have implemented our method in a multitasking operating system (Microsoft Windows CE) running on an Intel XScale-processor. We achieved up to 9% of total system power savings over the standard power management policy that puts the CPU in a low Power mode during idle periods.

Study on CGM-LMS Hybrid Based Adaptive Beam Forming Algorithm for CDMA Uplink Channel (CDMA 상향채널용 CGM-LMS 접목 적응빔형성 알고리듬에 관한 연구)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.895-904
    • /
    • 2007
  • This paper proposes a robust sub-optimal smart antenna in Code Division Multiple Access (CDMA) basestation. It makes use of the property of the Least Mean Square (LMS) algorithm and the Conjugate Gradient Method (CGM) algorithm for beamforming processes. The weight update takes place at symbol level which follows the PN correlators of receiver module under the assumption that the post correlation desired signal power is far larger than the power of each of the interfering signals. The proposed algorithm is simple and has as low computational load as five times of the number of antenna elements(O(5N)) as a whole per each snapshot. The output Signal to Interference plus Noise Ratio (SINR) of the proposed smart antenna system when the weight vector reaches the steady state has been examined. It has been observed in computer simulations that proposed beamforming algorithm improves the SINR significantly compared to the single antenna case. The convergence property of the weight vector has also been investigated to show that the proposed hybrid algorithm performs better than CGM and LMS during the initial stage of the weight update iteration. The Bit Error Rate (BER) characteristics of the proposed array has also been shown as the processor input Signal to Noise Ratio (SNR) varies.

Design of a Real-time Sensor Node Platform for Efficient Management of Periodic and Aperiodic Tasks (주기 및 비주기 태스크의 효율적인 관리를 위한 실시간 센서 노드 플랫폼의 설계)

  • Kim, Byoung-Hoon;Jung, Kyung-Hoon;Tak, Sung-Woo
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.371-382
    • /
    • 2007
  • In this paper, we propose a real-time sensor node platform that efficiently manages periodic and aperiodic tasks. Since existing sensor node platforms available in literature focus on minimizing the usage of memory and power consumptions, they are not capable of supporting the management of tasks that need their real-time execution and fast average response time. We first analyze how to structure periodic or aperiodic task decomposition in the TinyOS-based sensor node platform as regard to guaranteeing the deadlines of ail the periodic tasks and aiming to providing aperiodic tasks with average good response time. Then we present the application and efficiency of the proposed real-time sensor node platform in the sensor node equipped with a low-power 8-bit microcontroller, an IEEE802.15.4 compliant 2.4GHz RF transceiver, and several sensors. Extensive experiments show that our sensor node platform yields efficient performance in terms of three significant, objective goals: deadline miss ratio of periodic tasks, average response time of aperiodic tasks, and processor utilization of periodic and aperiodic tasks.

Design of a Low Power Digital Filter Using Variable Canonic Signed Digit Coefficients (가변 CSD 계수를 이용한 저전력 디지털 필터의 설계)

  • Kim, Yeong-U;Yu, Jae-Taek;Kim, Su-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.7
    • /
    • pp.455-463
    • /
    • 2001
  • In this Paper, an approximate processing method is proposed and tested. The proposed method uses variable CSD (VCSD) coefficients which approximate filter stopband attenuation by controlling the precision of the CSD coefficient sets. A decimation filter for Audio Codec '97 specifications has been designed having processor architecture that consists of program/data memory, arithmetic unit, energy/level decision, and sinc filter blocks, and fabricated with 0.6${\mu}{\textrm}{m}$ CMOS sea-of-gate technology. For the combined two halfband FIR filters in decimation filter, the number of addition operations were reduced to 63.5%, 35.7%, and 13.9%, compared to worst-case which is not an adaptive one. Experimental results show that the total power reduction rate of the filter is varying from 3.8 % to 9.0 % with respect to worst-case. The proposed approximate processing method using variable CSD coefficients is readily applicable to various kinds of filters and suitable, especially, for the speech and audio applications, like oversampling ADCs and DACs, filter banks, voice/audio codecs, etc.

  • PDF

A Study On Radiation Detection Using CMOS Image Sensor (CMOS 이미지 센서를 사용한 방사선 측정에 관한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.193-200
    • /
    • 2015
  • In this paper, we propose the radiation measuring algorithm and the device composition using CMOS image sensor. The radiation measuring algorithm using CMOS image sensor is based on the radiation particle distinguishing algorithm projected to the CMOS image sensor and accumulated and average number of pixels of the radiation particles projected to dozens of images per second with CMOS image sensor. The radiation particle distinguishing algorithm projected to the CMOS image sensor measures the radiation particle images by dividing them into R, G and B and adjusting the threshold value that distinguishes light intensity and background from the particle of each image. The radiation measuring algorithm measures radiation with accumulated and average number of radiation particles projected to dozens of images per second with CMOS image sensor according to the preset cycle. The hardware devices to verify the suggested algorithm consists of CMOS image sensor and image signal processor part, control part, power circuit part and display part. The test result of radiation measurement using the suggested CMOS image sensor is as follows. First, using the low-cost CMOS image sensor to measure radiation particles generated similar characteristics to that from measurement with expensive GM Tube. Second, using the low-cost CMOS image sensor to measure radiation presented largely similar characteristics to the linear characteristics of expensive GM Tube.

Development of Industrial Embedded System Platform (산업용 임베디드 시스템 플랫폼 개발)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.50-60
    • /
    • 2010
  • For the last half a century, the personal computer and software industries have been prosperous due to the incessant evolution of computer systems. In the 21st century, the embedded system market has greatly increased as the market shifted to the mobile gadget field. While a lot of multimedia gadgets such as mobile phone, navigation system, PMP, etc. are pouring into the market, most industrial control systems still rely on 8-bit micro-controllers and simple application software techniques. Unfortunately, the technological barrier which requires additional investment and higher quality manpower to overcome, and the business risks which come from the uncertainty of the market growth and the competitiveness of the resulting products have prevented the companies in the industry from taking advantage of such fancy technologies. However, high performance, low-power and low-cost hardware and software platforms will enable their high-technology products to be developed and recognized by potential clients in the future. This paper presents such a platform for industrial embedded systems. The platform was designed based on Telechips TCC8300 multimedia processor which embedded a variety of parallel hardware for the implementation of multimedia functions. And open-source Embedded Linux, TinyX and GTK+ are used for implementation of GUI to minimize technology costs. In order to estimate the expected performance and power consumption, the performance improvement and the power consumption due to each of enabled hardware sub-systems including YUV2RGB frame converter are measured. An analytic model was devised to check the feasibility of a new application and trade off its performance and power consumption. The validity of the model has been confirmed by implementing a real target system. The cost can be further mitigated by using the hardware parts which are being used for mass production products mostly in the cell-phone market.