• Title/Summary/Keyword: Low-power processor

Search Result 325, Processing Time 0.029 seconds

A High-performance Digital Hearing Aid Processor Based on a Programmable DSP Core (Programmable DSP 코어를 사용한 고성능 디지털 보청기 프로세서)

  • 박영철;김동욱;김인영;김원기
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.467-476
    • /
    • 1997
  • This paper presents a designing of a digital hearing aid processor (DHAP) chip being operated by a dedicated DSP core. The DHAP for hearing aid devices must be feasible within a size and power consumption required. Furthermore, it should be able to compensate for wide range of hearing losses and allow sufficient flexibility for the algorithm development. In this paper, a programmable 16-bit fixed-point DSP core is employed thor the designing of the DHAP. The designed DHAP performs a nonlinear loudness correction of 8 frequency bands based on audiometric measurements of impaired subjects. By employing a programmable DSP, the DHAP provides all the flexibility needed to implement audiological algorithms. In addition, the chip has low-power feature and $5, 500\times5000$$\mu$$m^2$ dimensions that fit for wearable hearing aids.

  • PDF

UbiFOS: A Small Real-Time Operating System for Embedded Systems

  • Ahn, Hee-Joong;Cho, Moon-Haeng;Jung, Myoung-Jo;Kim, Yong-Hee;Kim, Joo-Man;Lee, Cheol-Hoon
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.259-269
    • /
    • 2007
  • The ubiquitous flexible operating system (UbiFOS) is a real-time operating system designed for cost-conscious, low-power, small to medium-sized embedded systems such as cellular phones, MP3 players, and wearable computers. It offers efficient real-time operating system services like multi-task scheduling, memory management, inter-task communication and synchronization, and timers while keeping the kernel size to just a few to tens of kilobytes. For flexibility, UbiFOS uses various task scheduling policies such as cyclic time-slice (round-robin), priority-based preemption with round-robin, priority-based preemptive, and bitmap. When there are less than 64 tasks, bitmap scheduling is the best policy. The scheduling overhead is under 9 ${\mu}s$ on the ARM926EJ processor. UbiFOS also provides the flexibility for user to select from several inter-task communication techniques according to their applications. We ported UbiFOS on the ARM9-based DVD player (20 kB), the Calm16-based MP3 player (under 7 kB), and the ATmega128-based ubiquitous sensor node (under 6 kB). Also, we adopted the dynamic power management (DPM) scheme. Comparative experimental results show that UbiFOS could save energy up to 30% using DPM.

  • PDF

Terabit-Per-Second Optical Super-Channel Receiver Models for Partial Demultiplexing of an OFDM Spectrum

  • Reza, Ahmed Galib;Rhee, June-Koo Kevin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.334-339
    • /
    • 2015
  • Terabit-per-second (Tb/s) transmission capacity for the next generation of long-haul communication networks can be achieved using multicarrier optical super-channel technology. In an elastic orthogonal frequency division multiplexing (OFDM) super-channel transmission system, demultiplexing a portion of an entire spectrum in the form of a subband with minimum power is critically required. A major obstacle to achieving this goal is the analog-to-digital converter (ADC), which is power-hungry and extremely expensive. Without a proper ADC that can work with low power, it is unrealistic to design a 100G coherent receiver suitable for a commercially deployable optical network. Discrete Fourier transform (DFT) is often seen as a primary technique for understanding partial demultiplexing, which can be attained either optically or electronically. If fairly comparable performance can be achieved with an all-optical DFT circuit, then a solution independent of data rate and modulation format can be obtained. In this paper, we investigate two distinct OFDM super-channel receiver models, based on electronic and all-optical DFT-technologies, for partial carrier demultiplexing in a multi-Tb/s transmission system. The performance comparison of the receivers is discussed in terms of bit-error-rate (BER) performance.

Study on MPPT control using current control signal (전류제어신호를 이용한 MPPT제어기에 대한 연구)

  • Kang, T.K.;Kang, J.S.;Koh, K.H.;Kwon, S.K.;Shu, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.280-282
    • /
    • 2005
  • This paper proposes a simple MPPT control scheme of a Current-Control-Loop Error system Based that can be obtains a lot of advantage to compare with another digital control method, P&O and IncCond algorithm, that is applied mostly a PV system. An existent method is needed an expensive processor such as DSP that calculated to change the measure power of a using current and voltage sensor at the once. Therefore, it is applied a small home power generation system that required many expenses. But, a proposed method is easy to solve the cost reduction and power unbalance problems that it is used by control scheme to limit error of a current control of common sensor. This proposed algorithm had verified through a simulation and an experiment on battery charger using PIC that is the microprocessor of a low price.

  • PDF

A Novel Analytical Method for Selective Harmonic Elimination Problem in Five-Level Converters

  • Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.914-922
    • /
    • 2017
  • Multilevel converters have attracted a lot of attention in recent years. The efficiency parameters of a multilevel converter such as the switching losses and total harmonic distortion (THD) mainly depend on the modulation strategy used to control the converter. Among all of the modulation techniques, the selective harmonic elimination (SHE) method is particularly suitable for high-power applications due to its low switching frequency and high quality output voltage. This paper proposes a new expression for the SHE problem in five-level converters. Based on this new expression, a simple analytical method is introduced to determine the feasible modulation index intervals and to calculate the exact value of the switching angles. For each selected harmonic, this method presents three-level or five-level waveforms according to the value of the modulation index. Furthermore, a flowchart is proposed for the real-time implementation of this analytical method, which can be performed by a simple processor and without the need of any lookup table. The performance of the proposed algorithm is evaluated with several simulation and experimental results for a single phase five-level diode-clamped inverter.

Efficient Power Reduction Technique of LiDAR Sensor for Controlling Detection Accuracy Based on Vehicle Speed (차량 속도 기반 정확도 제어를 통한 차량용 LiDAR 센서의 효율적 전력 절감 기법)

  • Lee, Sanghoon;Lee, Dongkyu;Choi, Pyung;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.215-225
    • /
    • 2020
  • Light detection and ranging (LiDAR) sensors detect the distance of the surrounding environment and objects. Conventional LiDAR sensors require a certain amount of a power because they detect objects by transmitting lasers at a regular interval depending on a constant resolution. The constant power consumption from operating multiple LiDAR sensors is detrimental to autonomous and electric vehicles using battery power. In this paper, we propose two algorithms that improve the inefficient power consumption during the constant operation of LiDAR sensors. LiDAR sensors with algorithms efficiently reduce the power consumption in two ways: (a) controlling the resolution to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle's speed and (b) reducing the static power consumption using a sleep mode depending on the surrounding environment. A proposed LiDAR sensor with a resolution control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle's speed, compared to the maximum number of laser transmissions (Nx·max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The proposed LiDAR sensor has a risk factor for 4-cycles that does not detect objects in the sleep mode, but we consider it to be negligible because it immediately switches to an active mode when a change in surrounding conditions occurs. The proposed LiDAR sensor was tested on a commercial processor chip with the algorithm controlling the resolution according to the vehicle's speed and the surrounding environment.

On-Demand Remote Software Code Execution Unit Using On-Chip Flash Memory Cloudification for IoT Environment Acceleration

  • Lee, Dongkyu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.191-202
    • /
    • 2021
  • In an Internet of Things (IoT)-configured system, each device executes on-chip software. Recent IoT devices require fast execution time of complex services, such as analyzing a large amount of data, while maintaining low-power computation. As service complexity increases, the service requires high-performance computing and more space for embedded space. However, the low performance of IoT edge devices and their small memory size can hinder the complex and diverse operations of IoT services. In this paper, we propose a remote on-demand software code execution unit using the cloudification of on-chip code memory to accelerate the program execution of an IoT edge device with a low-performance processor. We propose a simulation approach to distribute remote code executed on the server side and on the edge side according to the program's computational and communicational needs. Our on-demand remote code execution unit simulation platform, which includes an instruction set simulator based on 16-bit ARM Thumb instruction set architecture, successfully emulates the architectural behavior of on-chip flash memory, enabling embedded devices to accelerate and execute software using remote execution code in the IoT environment.

Utility Interactive Solar Power Conditioner with Zero Voltage Soft Switching High frequency Sinewave Modulated Inverter Link

  • Terai H.;Sumiyoshi S.;Kitaizumi T.;Omori H.;Ogura K.;Chandhaket S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.668-672
    • /
    • 2001
  • The utility interactive sinewave modulated inverter for the solar photovoltaic (PV) power conversion and conditioning with a new high frequency pulse modulated link is presented for domestic residential applications. As compared with the conventional full-bridge hard switching PWM inverter with a high frequency AC link, the simplest single-ended quasi-resonant soft switching sinewave modulated inverter with a duty cycle pulse control is implemented, resulting in size and weight reduction and low-cost. This paper presents a prototype circuit of the single-ended zero voltage soft switching sinewave inverter for solar power conditioner and its operating principle. In addition, this paper proposes a control system to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed from an experimental point of view. A newly developed interactive sinewave power processor which has $92.5\%$ efficiencty at 4kW output is demonstrated. It is designed 540mm-300mm-125mm in size, and 20kg in weight.

  • PDF

Low Power Digital Servo Architecture for Optical Disc (광디스크 디지털 서보의 저전력 구현 아키텍쳐)

  • Huh, Jun-Ho;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.2
    • /
    • pp.31-37
    • /
    • 2001
  • Digital servo implementation in optical servo chip has been spotlighted since it is easy to integrate with other blocks and it has less sensitive characteristics change in terms of temperature variation and better flexibility to the system variation like pick-up. Therefore, Optical disc players adopted digital servo are increasing in market. However, one drawback of digital signal processor embedded digital servo is power consumption that is one of the most important factors of portable optical disc player system. For that reason, this paper introduces new architecture to reduce power consumption of digital servo by means of reducing DSP load but increasing minimum hardware size. The main idea of reducing power consumption of digital servo greatly is utilizing CDP characteristics as most operations are done and used up most operating steps of DSP at the initial time, but most power consumption is occurred in play mode. Therefore, if operating steps for digital filtering in play mode could be reduced greatly, power consumption of overall system can be reduced greatly. This paper shows an example that low power digital servo architecture whose current is reduced almost 83%, compare to that of digital servo which is not applied by the low power architecture introduced in this paper.

  • PDF

Microscopic DVS based Optimization Technique of Multimedia Algorithm (Microscopic DVS 기반의 멀티미디어 알고리즘 최적화 기법)

  • Lee Eun-Seo;Kim Byung-Il;Chang Tae-Gye
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.167-176
    • /
    • 2005
  • This paper proposes a new power minimization technique for the frame-based multimedia signal processing. The derivation of the technique is based on the newly proposed microscopic DVS(Dynamic Voltage Scaling) method, where, the operating frequency and the supply voltage levels are dynamically controlled according to the processing requirement for each frame of multimedia data. The multimedia signal processing algorithms are also redesigned and optimized to maximize the power saving efficiency of the microscopic DVS technology. The characterization of the mean/variance distribution of the processing load in the frame-based multimedia signal processing provides the major basis not only for the optimized application of the microscopic DVS technology but also for the optimization of the multimedia algorithms. The power saying efficiency of the proposed DVS approach is experimentally tested with the algorithms of MPEG-2 video decoder and MPEG-2 AAC audio encoder on the ARM9 RISC processor. The experimental results with the diverse MPEG-2 video and audio files show The average power saving efficiencies of 50$\%$ and 30$\%$, respectively. The results also agree very well with those of the analytic derivations.