• Title/Summary/Keyword: Low-power Bus

Search Result 193, Processing Time 0.025 seconds

A study on counting number of passengers by moving object detection (이동 객체 검출을 통한 승객 인원 개수에 대한 연구)

  • Yoo, Sang-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.9-18
    • /
    • 2020
  • In the field of image processing, a method of detecting and counting passengers as moving objects when getting on and off the bus has been studied. Among these technologies, one of the artificial intelligence techniques, the deep learning technique is used. As another method, a method of detecting an object using a stereo vision camera is also used. However, these techniques require expensive hardware equipment because of the computational complexity of used to detect objects. However, most video equipments have a significant decrease in computational processing power, and thus, in order to detect passengers on the bus, there is a need for an image processing technology suitable for various equipment using a relatively low computational technique. Therefore, in this paper, we propose a technique that can efficiently obtain the number of passengers on the bus by detecting the contour of the object through the background subtraction suitable for low-cost equipment. Experiments have shown that passengers were counted with approximately 70% accuracy on lower-end machines than those equipped with stereo vision camera.

Analysis and Control of Low Frequency Oscillation using TCSC Small Signal Model by Control of Firing Angles (TCSC의 소신호 모형을 이용한 점호각 제어에 의한 저주파 진동 감쇠 효과 해석 및 제어)

  • Kim, Tae-Hyun;Seo, Jang-Cheol;Park, Jong-Keun;Moon, Seung-Ill;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.120-124
    • /
    • 1995
  • TCSC can not only increase power flow but also damp low frequency oscillation by controlling firing angles of thyristors. But, a model considering voltage, current firing angles is not derived. This paper used a small signal model considirng these variables which was derived in paper [1]. TCSC model is combined with swing equation. Being related to rotor angles and firing angles of thyristors, current and synchronizing torque coefficient is reformulated. Because firing angles of thyristors can be controlled only twice within one period, swing equation is transformed to discrete time model. It is shown that low frequency oscillation can be damped by controlling firing angles in one machine infinite bus power system.

  • PDF

Natural Balancing of the Neutral Point Potential of a Three-Level Inverter with Improved Firefly Algorithm

  • Gnanasundari, M.;Rajaram, M.;Balaraman, Sujatha
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1306-1315
    • /
    • 2016
  • Modern power systems driven by high-power converters have become inevitable in view of the ever increasing demand for electric power. The total power loss can be reduced by limiting the switching losses in such power converters; increased power efficiency can thus be achieved. A reduced switching frequency that is less than a few hundreds of hertz is applied to power converters that produce output waveforms with high distortion. Selective harmonic elimination pulse width modulation (SHEPWM) is an optimized low switching frequency pulse width modulation method that is based on offline estimation. This method can pre-program the harmonic profile of the output waveform over a range of modulation indices to eliminate low-order harmonics. In this paper, a SHEPWM scheme for three-phase three-leg neutral point clamped inverter is proposed. Aside from eliminating the selected harmonics, the DC capacitor voltages at the DC bus are also balanced because of the symmetrical pulse pattern over a quarter cycle of the period. The technique utilized in the estimation of switching angles involves the firefly algorithm (FA). Compared with other techniques, FA is more robust and entails less computation time. Simulation in the MATLAB/SIMULINK environment and experimental verification in the very large scale integration platform with Spartan 6A DSP are performed to prove the validity of the proposed technique.

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

Driving Performance Prediction for Low-floor Midsize bus Using Simulator (시뮬레이터를 이용한 중형 저상버스의 주행성능 예측)

  • Kim, Gisu;Kim, Jinseong;Park, Yeong-il;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.541-547
    • /
    • 2015
  • In this study, the performance of a low-floor midsize bus under development is predicted through simulations. To predict the vehicle's acceleration, maximum speed, and uphill driving performance, a forward simulator which calculates the vehicle power is developed. Also we verify the forward simulator by comparing simulations and test result for benchmarking vehicle. To predict the fuel consumption, we use a backward simulator for a specified road cycle. However, to predict the fuel consumption using the backward simulation the engine fuel-consumption map is needed. The engine fuel-consumption map extracting data from a similar sized diesel engine is used by re-scaling the maximum torque. As a result, we simulate the vehicle's forward performance with a new engine. Further, we simulated the backward performance to optimize the fuel efficiency and gearshift timing.

Combined Design of PSS and STATCOM Controllers for Power System Stability Enhancement

  • Rohani, Ahmad;Tirtashi, M. Reza Safari;Noroozian, Reza
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.734-742
    • /
    • 2011
  • In this paper a robust method is presented for the combined design of STATCOM and Power System Stabilizer (PSS) controllers in order to enhance the damping of the low frequency oscillations in power systems. The combined design problems among PSS and STATCOM internal ac and dc voltage controllers has been taken into consideration. The equations that describe the proposed system have been linearized and a Fuzzy Logic Controller (FLC) has been designed for the PSS. Then, the Particle Swarm Optimization technique (PSO) which has a strong ability to find the most optimistic results is employed to search for the optimal STATCOM controller parameters. The proposed controllers are evaluated on a single machine infinite bus power system with the STATCOM installed in the midpoint of the transmission line. The results analysis reveals that the combined design has an excellent capability in damping a power system's low frequency oscillations, and that it greatly enhances the dynamic stability of power systems. Moreover, a system performance analysis under different operating conditions and some performance indices studies show the effectiveness of the combined design.

Static Voltage Stability Analysis using Reactive Power Loss Sensitivity (무효전력 손실감도를 이용한 정적 전압 안정도 해석)

  • Kim, Weon-Kyum;Lee, Bok-Yong;Lee, Sang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.52-55
    • /
    • 1999
  • In recent years, much attention has been paid to the voltage collapse phenomena. There has been reported many cases about the voltage collapse in many countries. These voltage collapse phenomena are known as the event that can occur due to reactive power deficits. This paper proposes an efficient method that can pursue the reactive power loss changes and gives the simple voltage collapse proximity indicator(VCPI) based on the reactive power loss sensitivities using optimal techniques. By comparing reactive power loss sensitivity with active power loss sensitivity, it is also proved that VCPI based on reactive power loss sensitivities is more effective. The developed VCPI is derived from the Jacobian matrix of Load Flow and the computational burden is very low and on-line implementation is possible. The proposed method is applied to a IEEE-14 bus test system and reliable and promising results are obtained.

  • PDF

An Optimization Design of the Diode Clamped Multi-Level Converter for Coaxial Inductive Power Transfer on the Low Voltage DC Micro-grid

  • Pairindra, Worapong;Khomfoi, Surin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.333-344
    • /
    • 2018
  • This proposed paper aims for the high efficiency contactless power transfer in household dc power distribution. A 300 W five-level diode clamped multi-level converter with 300 Vdc input dc link bus is employed for the power transferring task and the output voltage range is controlled at 48 Vdc. The inner and outer solenoid coils are used for inductive power transfer (IPT) transformer with the 200 kHz switching frequency for designed power density. Therefore, to achieve the converter efficiency above 95%, the LLC series resonant with fundamental harmonic analysis (FHA) and the calculated switching angles are used as an optimized tool for designing the system resonant tank. The validations of this approached topology are illustrated in both MATLAB/Simulink simulation and implementation.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.

Low Power Trace Cache for Embedded Processor

  • Moon Je-Gil;Jeong Ha-Young;Lee Yong-Surk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.204-208
    • /
    • 2004
  • Embedded business will be expanded market more and more since customers seek more wearable and ubiquitous systems. Cellular telephones, PDAs, notebooks and portable multimedia devices could bring higher microprocessor revenues and more rewarding improvements in performance and functions. Increasing battery capacity is still creeping along the roadmap. Until a small practical fuel cell becomes available, microprocessor developers must come up with power-reduction methods. According to MPR 2003, the instruction and data caches of ARM920T processor consume $44\%$ of total processor power. The rest of it is split into the power consumptions of the integer core, memory management units, bus interface unit and other essential CPU circuitry. And the relationships among CPU, peripherals and caches may change in the future. The processor working on higher operating frequency will exact larger cache RAM and consume more energy. In this paper, we propose advanced low power trace cache which caches traces of the dynamic instruction stream, and reduces cache access times. And we evaluate the performance of the trace cache and estimate the power of the trace cache, which is compared with conventional cache.

  • PDF