• Title/Summary/Keyword: Low-order current harmonics

Search Result 95, Processing Time 0.024 seconds

Topology of Single-Phase PFC Rectifier Circuit with Sinusoidal of Input Current (입력전류의 정현화에 의한 단상PFC정류회로의 토폴로지)

  • Lee, S.H.;Kim, Y.M.;Kwon, S.K.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.290-293
    • /
    • 2002
  • For small capacity rectifier circuits such as these for consumer electronics and appliances, capacitor input type rectifier circuits are generally used. Consequently, various harmonics generated within the power system become a serious problem. Various studies of this effect have been presented previously. However, most of these employ switching devices, such as FETs and the like. The absence of switching devices makes systems more tolerant to over-load, and brings low radio noise benefits. We propose a power factor connection scheme using a LC resonant in commercial frequency without switching devices. In this method, It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency, Hence, the harmonic characteristics can be significantly improved, where the lower order harmonics, such as the fifth and seventh orders are much reduced. The result are confirmed by the theoretical and experimental implementations.

  • PDF

Topology of input current waveform improvement type single-phase rectifier (입력전류 파형 개선형 단상 정류기의 토폴로지)

  • 이상현;박진민;문상필;서기영
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.403-406
    • /
    • 2003
  • For small capacity rectifier circuits such as these for consumer electronics and appliances, capacitor input type rectifier circuits are generally used. Consequently, various harmonics generated within the power system become a serious problem. Various studies of this effect have been presented previously. However, most of these employ switching devices, such as FET and the like. The absence of switching devices mattes systems more tolerant to over-load and brings low radio noise benefits. We propose a power factor correction scheme using a LC resonant in commercial frequency without switching devices. In this method It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency, Hence, the harmonic characteristics can be significantly improved, where the lower order harmonics, such as the fifth and seventh orders are much reduced The result are confirmed by the theoretical and experimental implementations.

  • PDF

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor

  • Kim, Nam-Hun;Choi, Chang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.500-504
    • /
    • 2007
  • In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.

Grid Current Control Scheme at Thee-Phase Grid-Connected Inverter Under Unbalanced and Distorted Grid Voltage Conditions (계통전압 왜곡 및 불평형시 3상 계통연계인버터의 계통전류제어 기법)

  • Tran, Thanh-Vu;Chun, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1560-1565
    • /
    • 2013
  • This paper proposes the control method for compensating for unbalanced grid current and reducing a total harmonic distortion (THD) of the grid current at the three-phase grid-connected inverter systems under unbalancd and distorted grid voltage conditions. The THD of the grid current caused by grid voltage harmonics is derived by considering the phase delay and magnitude attenuation due to the hardware low-pass filter (LPF). The Cauchy-Schwarz inequality theory is used in order to search more easily for a minimum point of THD. Both the gain and angle of a compensation voltage at the minimum point of THD of the grid current are derived. The negative-sequence components in the three-phase unbalanced grid voltage are cancelled in order to achieve the balanced grid current. The simulation and experimental results show the validity of the proposed control methods.

A High Frequency Link Direct DC-AC Converter for Fuel Cell Power Source (연료전지 발전 시스템용 고주파 링크 DC-AC 컨버터)

  • Song Y.J.;Jung B.M.;Han S.B.;Jeong H.G.;Park S.I.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.124-126
    • /
    • 2004
  • This paper describes a boost converter cascaded high frequency link direct do-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from fuel cell is proposed. A new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented in detail.

  • PDF

A High Frequency Link Direct DC-AC Converter for Fuel Cell Power Source (연료전지 발전 시스템용 고주파 링크 DC-AC 컨버터)

  • Song, Y.J.;Park, S.I.;Jeong, H.G.;Han, S.B.;Jung, B.M.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.245-249
    • /
    • 2005
  • This paper describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from fuel cell is proposed. A new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented in detail.

  • PDF

Characteristic Analysis of Rotor Losses in High-Speed Permanent Magnet Synchronous Motor (초고속 영구자석형 동기 전동기의 회전자 손실 특성해석)

  • 장석명;조한욱;이성호;양현섭
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.143-151
    • /
    • 2004
  • High-speed permanent magnet machines are likely to be a key technology for electric drives and motion control systems for many applications, since they are conductive to high efficiency, high power density, small size and low weight. In high-speed machines, the permanent magnets are often contained within a retaining sleeve. However, the sleeve and the magnets are exposed to high order flux harmonics, which cause parasitic eddy current losses. Rotor losses of high-speed machines are of great importance especially in high-speed applications, because losses heat the rotor, which is often very compact construction and thereby difficult to cool. This causes a danger of demagnetization of the NdFeB permanent magnets. Therefore, special attention should be paid to the prediction of the rotor losses. This paper is concerned with the rotor losses in permanent magnet high-speed machines that are caused by permeance variation due to stator slotting. First, the flux harmonics are determined by double Fourier analysis of the normal flux density data over the rotor surface. And then, the rectilinear model was used to calculate rotor losses in permanent magnet machines. Finally, Poynting vector have been used to investigate the rotor eddy current losses of high-speed Permanent magnet machine.

A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters (디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF

A Vector Control System for Five-Phase Squirrel-Cage Induction Motor Considering Effects of 3rd Current Harmonics Component (제3 고조파 전류성분의 영향을 고려한 5상 농형 유도전동기의 벡터제어 시스템)

  • Kim, Min-Huei;Kim, Nam-Hun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.206-213
    • /
    • 2012
  • This paper propose a improved speed control system for five-phase squirrel-cage induction motor(IM) considering effects of 3rd. harmonic current components with field oriented control(FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] induction motor.

Analysis of Harmonic Currents Propagation on the Self-Excited Induction Generator with Nonlinear Loads

  • Nazir, Refdinal
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1935-1943
    • /
    • 2014
  • In recent years, the induction machines are increasingly being used as self-excited induction generators (SEIG). This generator is especially widely employed for small-scale power plants driven by renewable energy sources. The application of power electronic components in the induction generator control (IGC) and the loading of SEIG using nonlinear loads will generate harmonic currents. This paper analyzes the propogation of harmonic currents on the SEIG with nonlinear loads. Transfer function method in the frequency domain is used to calculate the gain and phase angle of each harmonic current component which are generated by a nonlinear loads. Through the superposition approach, this method has also been used to analyze the propagation of harmonic currents from nonlinear load to the stator windings. The simulation for the propagation of harmonic currents for a 4 pole, 1.5 kW, 50Hz, 3.5A, Y-connected, rotor-cage SEIG with energy-saving lamps, have provided results almost the same with the experiment. It can prove that the validity of the proposed models and methods. The study results showed that the propagation of harmonic currents on the stator windings rejects high order harmonics and attenuates low order harmonics, consequently THDI diminish significantly on the stator windings.