• Title/Summary/Keyword: Low-lignin

Search Result 163, Processing Time 0.026 seconds

Effects of different ratios and storage periods of liquid brewer's yeast mixed with cassava pulp on chemical composition, fermentation quality and in vitro ruminal fermentation

  • Kamphayae, Sukanya;Kumagai, Hajime;Angthong, Wanna;Narmseelee, Ramphrai;Bureenok, Smerjai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.470-478
    • /
    • 2017
  • Objective: This study aims to evaluate the chemical composition, fermentation quality and in vitro ruminal fermentation of various ratios and storage periods of liquid brewer's yeast (LBY) mixed with cassava pulp (CVP). Methods: Four mixtures of fresh LBY and CVP were made (LBY0, LBY10, LBY20, and LBY30 for LBY:CVP at 0:100, 10:90, 20:80, and 30:70, respectively) on a fresh matter basis, in 500 g in plastic bags and stored at 30 to $32^{\circ}C$. After storage, the bags were opened weekly from weeks 0 to 4. Fermentation quality and in vitro gas production (IVGP) were determined, as well as the dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE), neutral detergent fiber, acid detergent fiber and acid detergent lignin contents. Results: The contents of CP and EE increased, whereas all other components decreased, in proportion to LBY inclusion (p<0.01). The DM and OM contents gradually decreased in weeks 3 and 4 (p<0.05), while EE contents were lowest in week 0. The pH, ammonia nitrogen per total nitrogen ($NH_3-N/TN$) and V-score in each mixture and storage period demonstrated superior fermentation quality ($pH{\leq}4.2$, $NH_3-N/TN{\leq}12.5%$, and V-score>90%). The pH increased and $NH_3-N/TN$ decreased, with proportionate increases of LBY, whereas the pH decreased and $NH_3-N/TN$ increased, as the storage periods were extended (p<0.01). Although IVGP decreased in proportion to the amount of LBY inclusion (p<0.01), in vitro organic matter digestibility (IVOMD) was unaffected by the mixture ratios. The highest IVGP and IVOMD were observed in week 0 (p<0.01). Conclusion: The inclusion of LBY (as high as 30%) into CVP improves the chemical composition of the mixture, thereby increasing the CP content, while decreasing IVGP, without decreasing fermentation quality and IVOMD. In addition, a preservation period of up to four weeks can guarantee superior fermentation quality in all types of mixtures. Therefore, we recommend limiting the use of CVP as a feed ingredient, given its low nutritional value and improving feed quality with the inclusion of LBY.

Change of Microflora in Livestock Manure during Composting Process (축산폐기물의 퇴비화 과정중 미생물상의 변동)

  • Whang, Kyun-Sook;Chang, Ki-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.303-311
    • /
    • 1996
  • The microflora changes of 10 water-controled treatments combined with livestock manures(pig, chicken) and bulking agents(sawdust, paper sludge) were investigated. The B/F values of the P-1 and C-1(65%, $H_2O$) treatments were 3571 and 5400 respectively, but those of the P-4 and C-4(50%, $H_2O$) treatments showed very low values, 667 and 334, respectively. The B/F values tended to increase with higher water content of the treatments. In the composting processes, the successions of microflora, adapting the compost environments, took place via fluctuating temperature. In the high temperature period, the numbers of mesophilic bacteria and fungi decreased, but that of the spore forming bacteria increased. However, the number of mesophilic bacteria inereased during the cold period. The B/F values of compost ranged 25-300, which indicates a decrease in the quantity of bacteria. The time required for the temperature of compost to reach $60^{\circ}C$ showed different patterns. There was no pathogenic microorganism in the treatments which reached a high temperature in a short period of time, but, in the treatments which reached a high temperature over a Long period of time, the pathgenic microorganism was not still alive.

  • PDF

Enhancement of Enzymatic Hydrolysis of Lignocellulosic Biomass by Organosolv Pretreatment with Dilute Acid Solution (효소당화를 위한 목질계 바이오매스의 유기용매 침출 전처리 공정)

  • Kim, Jun Beom;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.806-811
    • /
    • 2016
  • Organosolv pretreatment is the process to frationation of lignocellulosic feedstocks to enhancement of enzymatic hydrolysis. This process has advantages that organic solvents are always easy to recover by distillation and recycled for pretreatment. The chemical recovery in organosolv pretreatment can isolate lignin as a solid material and carbohydrates as fermentable sugars. For the economic considerations, using of low-molecular-weight alcohols such as ethanol and methanol have been favored. When acid catalysts are added in organic solvent, the rate of delignification could be increased. Mineral acids (hydrochloric acid, sulfuric acid, and phosphoric acid) are good catalysts to accelerate delignification and xylan degradation. In this study, the biomass was pretreated using 40~50 wt% ethanol at $170{\sim}180^{\circ}C$ during 20~60 min. As a results, the enzymatic digestibility of 2-stage pretreatment of rigida using 50 wt% ethanol at $180^{\circ}C$ was 40.6% but that of 1-stage pretreatment was 55.4% on same conditions, therefore it is shown that the pretreatment using mixture of the organosolv and catalyst was effective than using them separately.

Kinetic Analysis for the Pyrolysis of Solid Refues Fuel Using Livestock Manure (축분 고형연료의 열분해 동역학 연구)

  • Jang, Eun-Suk;Song, Eunhye;Yoon, Jonghyuk;Kim, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.443-451
    • /
    • 2020
  • In this study, the physico-chemical properties and pyrolysis kinetics of livestock mature solid fuel were investigated to know its feasibility as a fuel. Ultimate and proximate analysis results showed that livestock mature solid fuel has high contents of volatile matter (64.94%), carbon (44.35%), and hydrogen (5.54%). The low heating value of livestock mature solid fuel (3880 kcal/kg) was also higher than the standard requirement of solid fuel (3000 kcal/kg). Thermogravimetic analysis results indicated that livestock mature solid fuel has three decomposition temperature regions. The first temperature zone (130~330 ℃) was consisted with the vaporization of extracts and the decomposition of hemicellulose and cellulose. The second (330~480 ℃) and third (550~800 ℃) temperature regions were derived from the decomposition of lignin and additional decomposition of carbonaceous materials, respectively. The activation energy derived from model free kinetic analysis results including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods for the pyrolysis of livestock mature solid fuel was in the range of 173.98 to 525.79 kJ/mol with a conversion rate of 0.1 to 0.9. In particular, the activation energy increased largely at the higher conversion than 0.6. The kinetic analysis using a curve-fitting method suggested that livestock mature solid fuel was decomposed via a multi-step reaction which can be divided into five decomposition steps.

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis (급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구)

  • Choi, Sang Kyu;Choi, Yeon Seok;Kim, Seock Joon;Han, So Young
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.646-652
    • /
    • 2016
  • Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

Optimization of Microwave-assisted Extraction Conditions for Production of Bioactive Material from Corn Stover (옥수수 대로부터 생리활성물질 생산 증대를 위한 마이크로파 추출 공정 최적화)

  • Min, Bora;Han, Yeojung;Lee, Dokyeoung;Jo, Jaemin;Jung, Hyunjin;Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • Corn stover is known as a good candidate for a functional food ingredient when the main lignocellulosic material, lignin, is used as bioactive materials as form of polyphenolic compounds. The purpose of this study was to determine the microwave extraction conditions under which total phenolic compounds (TPC) and flavonoid contents of corn stover were maximized. Microwave-assisted extracts using sulfuric acid ranging from 0 to 1.0 mol with extraction time between 40 and 240 sec were conducted by using response surface methodology (RSM). Microwave power showed significant effects (p<0.05) and the concentrations of TPC and flavonoids increased with increased level of microwave power and extraction time. The optimum conditions for corn stover extraction were determined as 698.6 W, 240 sec, and 0 mol sulfuric acid, and the predicted value of TPC and flavonoid is 82.4 mg GAE/g DM and 18.1 mg/g DM, respectively. Microwave extraction was evaluated as an economic process with low energy consumption, short extraction and high extraction yield of bioactive including TPC and flavonoids compared to conventional extractions.

Sawdust Substitution in Growth Medium of Oyster Mushroom for Using Its By-product Spent Mushroom Substrates as Ruminant Feed (수확 후 배지의 가축 사료화를 위한 느타리 생육배지 톱밥 대체재료 선발 연구)

  • Kim, Jeong-Han;Jang, Myoung-Jun
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.407-414
    • /
    • 2020
  • To replace the sawdust in the growth medium of oyster mushroom to utilize its by-product spent mushroom substrates (SMS) as feed for ruminant, we performed cultivation test using cotton seed hull pellet (CSHP), corn stalk pellet (CSP), corncob (CC), and analyzed the feed chemical properties of those SMS. As a result of cultivation test, CC and CSHP treatment took 27 days for spawn run, 4 days for primordium formation, and 3 days for development fruiting bodies, resulting in a total cultivation period of 34 days. The yield per bottle was 134 g for CC treatment, similar to 130 g for control, while CSHP treatment (112 g) and CSP treatment (68 g) were lower than that of control. The highest biological efficiency (BE) was shown in CC treatment as 80.1%, which was 11.4% higher than 68.7% of control. The SMS of CC treatment had a relatively low content of neutral detergent fiber and acid detergent fiber, and in particular, lignin content was the lowest and crude protein content was the highest among other treatments. Therefore, CC as a substitute material for sawdust was capable of stable mushroom production and excellent nutritional value as a feed for its by-products.

Characterization of fine organic aerosols from biomass burning emissions using FTIR method (분광학적 방법을 이용한 바이오매스 연소 배출 유기 입자의 화학적 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.125-132
    • /
    • 2021
  • Fresh PM2.5 smokes emitted from combustion of four biomass materials (pellet, palm fruit fiber (PFF), PKS, and sawdust) in a laboratory-controlled environment were characterized using an attenuated total reflectance-fourier transform infrared (ATR-FTIR) technique. In smoke samples emitted from combustion of pellets, PFF and PKS, which is being used as boiler fuels for greenhouses in rural areas, the organic carbon/elemental carbon (OC/EC) ratios in PM2.5 were very high (14.0-35.5), whereas in sawdust smoke samples they were significantly low (<4.0) due to the combustion method close to flaming combustion. ATR-FTIR analysis showed that OH(3400-3250 cm-1), CH3(2958-2840 cm-1), CH2(2910 cm-1 and 2850 cm-1), ketone(1726-1697 cm-1), C=C(1607-1606 cm-1 and 1515-1514 cm-1), lignin (1463-1462 cm-1 and 1430-1428 cm-1) and -NO2(1360-1370 cm-1) peaks were identified in all biomass burning (BB) smoke samples. However, additional peaks appeared depending on the type of biomass. Among the four types of biomass materials, an additional peak of the methylene group CH3(2872-2870 cm-1) appeared only in PFF and PKS smoke samples, and a peak of C=O(1685 cm-1) was also confirmed. And in the case of PKS smoke samples, a peak of aromatic C=C(1593 cm-1 and 1476 cm-1) that did not appear in other BB samples was also observed. This indicates that the molecular structure of organic compounds emitted during BB differs depending on the type of biomass materials. The results of this study are expected to provide valuable information to more specifically reveal the effect of BB on PM2.5 collected in the atmospheric environment.

Feed Value of the Different Plant Parts of Main Forage Rice Varieties (사료용 벼 주요 품종의 수확부위 별 사료가치)

  • Ahn, Eok-Keun;Won, Yong-Jae;Kang, Kyung-Ho;Park, Hyang-Mi;Jung, Kuk-Hyun;Hyun, Ung-Jo;Lee, Yoon-Sung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In order to manufacture feed suitable for consumer use and provide feed value information, we analyzed the feed components of the four main forage rice varieties by plant parts harvested 30 days after heading. The contents of the six feed ingredients were significantly different (p<0.05) among harvested parts. In the panicle, the crude protein (CP) (6.97%) and lignin (3.11%) were the highest, while the crude ash (CA) and neutral detergent fiber (NDF) contents were significantly lower, resulting in a total digestible nutrient (TDN) content of 77.29%, which is higher than that of the stem (64.82%) and leaf blade and sheath (LBS) (63.57%) (p<0.05). In contrast, the content of crude fat (CF) did not differ significantly among parts (p<0.05). In panicles from 'Jonong', 'Nokyang' and 'Yeongwoo', the TDN content of each cultivar was 78.48-79.07%, with no significant difference among the varieties. In 'Mogwoo' (Mw), the CP content was 8.70%, which was much higher than that of other varieties (p<0.05). In particular, the Mw TDN content was slightly lower in the panicle (72.95%) but higher in the stem (75.37%) and LBS (66.49%) than in the other varieties. The CA, NDF, acid detergent fiber (ADF), and lignin contents were also very low compared to other varieties; therefore, the feed value of the stem and LBS was excellent. In addition, the total dry matter weight (DMW) was 123 g per hill, which was much higher than 82-105 g per hill for other varieties. The distribution of DMW by part was LBS (56.9 g), stem (36.8 g), and panicle (29.3 g), and because the parts, except the panicles, were much higher than the 43-57% of other varieties (grain straw ratio: 76%), rice straw is advantageous in terms of quantity and feed value when used as forage on farms. The relative feed value (RFV) of the four cultivars ranged from 86.79-403.74 across all parts, and hay of grade 3 or higher with an RFV of 100 or more increased with delayed heading in both stems and LBS. This is due to the accumulation of starch into grains during ripening, which supports the observation that the RFV of the early flowering 'Jonong' and 'Nokyang' panicles increased.

Evaluation of nutritive value of chestnut hull for ruminant animals using in vitro rumen fermentation (밤 가공 부산물의 반추가축용 사료 가치 평가: in vitro 반추위 배양)

  • Jeong, Sin-Yong;Jo, Hyeon-Seon;Park, Gi-Su;Kang, Gil-Nam;Jo, Nam-Chul;Seo, Seongwon
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.335-340
    • /
    • 2012
  • During the manufacturing process of chestnut, 50% of biomass is produced as chestnut shell (CS) or chestnut hull (CH), a forestry by-product. Due to its high fiber content and economic benefit, there is a possibility of using chestnut hull as a supplement for a ruminant diet. Few studies, however, have been conducted on evaluating nutritive value of chestnut hull for ruminant animals. The objective of this study were thus to analyze chemical composition of CS, a by-product after the first processing of chestnut, and CH, a by-product after the second processing, and access in vitro rumen fermentation characteristics of them. For the in vitro fermentation using strained rumen fluid obtained from a fistulated Hanwoo steer, commercial total mixed ration (TMR) for dairy goat was used as a basal diet and was replaced with different proportions of chestnut shell and hull. A total number of 13 treatments were carried out in this study: 100% TMR, 100% CS, 100% CH, a mix with 50% CS and 50% of CH (MIX), TMR replaced with 5%, 10%, or 15% of CS, CH, or MIX, respectively. For each treatment, in vitro dry matter digestibility (IVDMD) and pH after 48 hours of rumen fermentation were measured. Gas production at 6, 12, 24, 48 hours of incubation was also analyzed. Compared to CH, CS contains higher level of fiber (NDF, ADF, lignin) and consequently has a lower amount of non-fiber carbohydrate, but no difference was observed in the other nutrients (i.e. crude protein, crude fat, and ash). IVDMD was significantly (p<0.05) the highest in 100% CH (71.97%) and the lowest in 100% CS (42.80%). Addition of CH by replacing TMR did not affect IVDMD, while an increase in the proportion of CS tended to decrease IVDMD. The total gas production after 48 hours of incubation and the rate of gas production were also the highest in 100% CH and the lowest in 100% CS (P<0.05). Likewise, the pH after 48 hours of fermentation was significantly (p<0.05) the lowest in 100% CH (6.33) and the highest in 100% CS (6.50), and no significant difference in gas production was observed when TMR was replaced with CS or CH up to 15% (P>0.05). In conclusion, CH may successfully be used for a supplement in a ruminant diet. The nutritive value of CS is relative low, but can replace, if not 100%, low quality forage. This study provides valuable information about the nutritive value of CS and CH. An in vivo trials, however, is needed for conclusively accessing the nutritive value of CS and CH.