• Title/Summary/Keyword: Low-k materials

Search Result 8,605, Processing Time 0.041 seconds

Power Semiconductor SMD Package Embedded in Multilayered Ceramic for Low Switching Loss

  • Jung, Dong Yun;Jang, Hyun Gyu;Kim, Minki;Jun, Chi-Hoon;Park, Junbo;Lee, Hyun-Soo;Park, Jong Moon;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.866-873
    • /
    • 2017
  • We propose a multilayered-substrate-based power semiconductor discrete device package for a low switching loss and high heat dissipation. To verify the proposed package, cost-effective, low-temperature co-fired ceramic, multilayered substrates are used. A bare die is attached to an embedded cavity of the multilayered substrate. Because the height of the pad on the top plane of the die and the signal line on the substrate are the same, the length of the bond wires can be shortened. A large number of thermal vias with a high thermal conductivity are embedded in the multilayered substrate to increase the heat dissipation rate of the package. The packaged silicon carbide Schottky barrier diode satisfies the reliability testing of a high-temperature storage life and temperature humidity bias. At $175^{\circ}C$, the forward current is 7 A at a forward voltage of 1.13 V, and the reverse leakage current is below 100 lA up to a reverse voltage of 980 V. The measured maximum reverse current ($I_{RM}$), reverse recovery time ($T_{rr}$), and reverse recovery charge ($Q_{rr}$) are 2.4 A, 16.6 ns, and 19.92 nC, respectively, at a reverse voltage of 300 V and di/dt equal to $300A/{\mu}s$.

ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature (저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료 감응형 태양전지)

  • Kwon, Byoung-Wook;Son, Dong-Ick;Park, Dong-Hee;Yang, Jeong-Do;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.483-487
    • /
    • 2010
  • To fabricate $TiO_2$ nanoparticle-based dye sensitized solar cells (DSSCs) at a low-temperature, DSSCs were fabricated using hydropolymer and ZnO nanoparticles composites for the electron transport layer around a low-temperature ($200^{\circ}C$). ZnO nanoparticle with 20 nm and 60 nm diameter were used and Pt was deposited as a counter electrode on ITO/glass using an RF magnetron sputtering. We investigate the effect of ZnO nanoparticle concentration in hydropolymer and ZnO nanoparticle solution on the photoconversion performance of the low temperature fabricated ($200^{\circ}C$) DSSCs. Using cis-bis(isothiocyanato)bis(2,20 bipyridy1-4,40 dicarboxylato) ruthenium (II) bis-tetrabutylammonium (N719) dye as a sensitizer, the corresponding device performance and photo-physical characteristics are investigated through conventional physical characterization techniques. The effect of thickness of the ZnO photoelectrode and the morphology of the ZnO nanoparticles with the variations of hydropolymer to ZnO ratio on the photoconversion performance are also investigated. The morphology of the ZnO layer after sintering was examined using a field emission scanning electron microscope (FE-SEM). 60 nm ZnO nanoparticle DSSCs showed an incident photon-to-current conversion efficiency (IPCE) value of about 7% higher than that of 20 nm ZnO nanoparticle DSSCs. The maximum parameters of the short circuit current density ($J_{sc}$), the open circuit potential ($V_{oc}$), fill factor (ff), and efficiency ($\eta$) in the 60 nm ZnO nanoparticle-based DSSC devices were 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, respectively.

Synthesis and Characterization of Crosslinked Hole Transporting Polymers for Organic Light Emitting Diodes

  • Jang, Do-Young;Lim, Youn-Hee;Kim, Joo-Hyun;Kim, Jang-Joo;Shin, Jung-Hyu;Yoon, Do-Y.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.235-235
    • /
    • 2006
  • Triphenylamine derivatives play important roles as hole transporting materials in organic light emitting devices. However, low molecular weight triphenylamine derivatives show low glass transition temperature and aggregation behavior, and the vapor deposition step of low molecular weight materials is incompatible with large area display fabrication. Conventional polymer PEDOT-PSS HTL has serious drawbacks such as the ITO anode corrosion, poor surface energy match with aromatic EMLs. To solve these problems, we introduced crosslinkable units to triphenylamine-based polymers to make insoluble HTL by thermal curing following spin-coating. Electrochemical and optical properties of the new hole transporting materials were investigated. In addition, the device characteristics obtained with new hole transporting polymers were investigated in details.

  • PDF

Formation of Neutral Beam by Low Angle Reflection

  • Lee, Do-Haing;Jung, Min-Jae;Bae, Jung-Woon;Kim, Sung-Jin;Lee, Jae-Koo;Yeom, Geun-Young
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.1
    • /
    • pp.23-26
    • /
    • 2003
  • In this study, a neutral beam was formed using a low angle forward reflection of the ion beam and its degree of neutralization at different reflection angles was investigated. When the ion beam was reflected by a reflector at the angles lower than 15$^{\circ}$, most of the ions reflected were neutralized and the lower reflector angle showed the higher degree of neutralization. Photoresist(PR) and SiO$_2$ etchings were carried out with the neutralized oxygen and fluorine radical fluxes, respectively, and highly anisotropic etch profiles could be obtained suggesting the formation of highly directional neutral flux.

  • PDF

Low temperature deposition of carbon nanofilaments using vacuum-sublimated $Fe(CO)_5$ catalyst with thermal chemical vapor deposition

  • Kim, Nam-Seok;Kim, Kwang-Duk;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • Carbon nanofilaments were deposited on silicon oxide substrate by thermal chemical vapor deposition method. We used $Fe(CO)_5$ as the catalyst for the carbon nanofilaments formation. Around $800^{\circ}C$ substrate temperature, the formation density of carbon nanofilaments could be enhanced by the vacuum sublimation technique of $Fe(CO)_5$, compared with the conventional spin coating technique. Finally, we could achieve the low temperature, as low as $350^{\circ}C$, formation of carbon nanofilaments using the sublimated Fe-complex nanograins with thermal chemical vapor deposition. Detailed morphologies and characteristics of the carbon nanofilaments were investigated. Based on these results, the role of the vacuum sublimation technique for the low temperature deposition of carbon nanofilaments was discussed.

Low cycle fatigue properties of hydrogenated welding sheets of Zr-Sn-Nb alloy using funnel-shaped flat specimens

  • Lian-feng, Wei;Chen, Bao;Shi-zhong, Wang;Yong, Zheng;Meng-bin, Zhou
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1724-1731
    • /
    • 2020
  • Low cycle fatigue tests on the hydrogenated welding seam of Zr-Sn-Nb alloy at room temperature and 360 ℃ had been carried out by using the funnel-shaped flat specimens. The relationships between nominal stress & strain directly measured across the funnel and local stress & strain at the root of the funnel are given by considering cyclic plasticity correction. The results show that the fatigue resistance of welding seam at room temperature is only slightly better than that at 360 ℃. Probabilistic fatigue life curves are obtained by using a two-parameter power function.

A Study on the Etcting Technology for Metal Interconnection on Low-k Polyimide (Low-k Polyimide상의 금속배선 형성을 위한 식각 기술 연구)

  • Mun, Ho-Seong;Kim, Sang-Hun;An, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.450-455
    • /
    • 2000
  • For further scaling down of the silicon devices, the application of low dielectric constant materials instead of silicon oxide has been considered to reduce power consumption, crosstalk, and interconnection delay. In this paper, the effect of $O_2/SF_6$ plasma chemistry on the etching characteristics of polyimide-one of the promising low-k interlayer dielectrics-has been studied. The etch rate of polyimide decreases with the addition of $SF_6$ gas due to formation of nonvolatile fluorine compounds inhibiting reaction between oxygen and hydrocarbon polymer, while applying substrate bias enhances etching process through physical attack. However, addition of small amount of $SF_6$ is desirable for etching topography. $SiO_2$ hard mask for polyimide etching is effective under $O_2$plasma etching(selectivity~30), while $O_2/SF_6$ chemistry degrades etching selectivity down to 4. Based on the above results, $1-2\mu\textrm{m}$ L&S PI2610 patterns were successfully etched.

  • PDF

Effect of Carbon and Nickel on Microstructure and Low Temperature Charpy Impact Properties of HSLA Steels (HSLA 강의 미세조직과 저온 샤르피 충격 특성에 미치는 탄소와 니켈의 영향)

  • Eom, Haewon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.184-196
    • /
    • 2020
  • In this study, effects of carbon and nickel on microstructure and low temperature Charpy impact properties of HSLA (high strength low alloy) steels are investigated. To understand the complex phase transformation behavior of HSLA steels with high strength and toughness before and after welding processes, three kinds of HSLA steels are fabricated by varying the carbon and nickel content. Microstructure analysis, low temperature Charpy impact test, and Vickers hardness test are performed for the base metals and CGHAZ (coarse-grain heat affected zone) specimens. The specimens with the lowest carbon and nickel content have the highest volume fraction of AF, the lowest volume fraction of GB, and the smallest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the highest. The specimens with increased carbon and nickel content have the lowest volume fraction of AF, the highest volume fraction of GB, and the largest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the lowest.

Low temperature curable organic gate insulator for organic field-effect transistors

  • Kim, Joo-Young;Jung, Myung-Sup;Lee, Sang-Yoon;Kim, Jong-Min;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.664-666
    • /
    • 2008
  • Low-temperature curable organic insulator was prepared through blending of polyimide type base resin and cross-linking agent. The newly developed resin can be formed into films using a wet process and cured at $130^{\circ}C$. Using the low temperature cured film as the gate dielectric layer, the field effect mobility of $0.15\;cm^2/V{\cdot}s$ was obtained from a pentacene field effect transistor in the saturation regime and no hysteresis behavior was observed in transfer curves.

  • PDF