• Title/Summary/Keyword: Low-e coating

Search Result 114, Processing Time 0.03 seconds

Characteristics of c-axis oriented sol-gel derived ZnO films (C-축으로 정렬된 sol-gel ZnO 박막의 특성)

  • 김상수;장기완;김인성;송호준;박일우;이건환;권식철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.49-55
    • /
    • 2001
  • ZnO films were fabricated on p-type Si(100) wafer ITO glass and quartz glass by the sol-gel process using zinc acetate dihydrate as starting material. A homogeneous and stable solution was prepared by dissolving the zinc acetate dihydrate in a solution of 2-methoxyethanol and monoethanolamine (MEA). ZnO films were deposited by spin-coating at 2800 rpm for 25 s and were dried on a hot plate at $250^{\circ}C$ for 10 min. Crystallization of the films was carried out at $400^{\circ}C$~$800^{\circ}C$ for 1 h in air. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), UV-vis transmittance spectroscopy, FTIR transmittance spectroscopy and Photoluminescence (PL) spectroscopy measurements have been used to study the structural and optical properties of the films. ZnO films highly oriented along the (002)plane were obtained. In all cases the films were found to be transparent (above 70%) in visible range with a sharp absorption edge at wavelengths of about 380nm, which is very close to the intrinsic band-gap of ZnO(3.2 eV). The low temperature band-edge photoluminescence revealed a complicated multi-line structure in terms of bound exciton complexes and the phonon replicas.

  • PDF

A study on the Combustion Characteristics of Wall Paper (내장벽지의 연소특성에 관한 연구)

  • Oh, Kyu-Hyung;Choi, Yeon-Yi;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.90-97
    • /
    • 2007
  • Combustion characteristics and toxicity of combustion gas of wallpaper samples were analyzed to evaluate the fire risk of wallpaper furnished in living space. In this study ash residue ratio was measured with high temperature electric furnace, and thermal analysis was carried out with TGA. Combustion time and smoke concentration were measured with cone heater and combustion gas analyzer. Smoke density of samples was measured using smoke chamber of ASTM E 662. The experimental results were showed as followings. Pyrolysis of silk wallpaper started at lower temperature compared to the other samples. It means that the silk wallpaper can be ignited at low heat flux and will have more fire risk than the others. Ignition time by radiation heat flux of silk wallpaper is shorter compared to the other samples, so evacuation time must be reduced. In the case of vinyl coated silk wall paper, carbon mono oxide concentration is the highest and the toxicity and damage effect to consciousness was stronger compared to the other samples. Smoke density of silk wall paper and fire retardant mixed coated silk wall paper were very high due to vinyl coating.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Hydrocarbon Plasma of a Low-Pressure Arc Discharge for Deposition of Highly-Adhesive Hydrogenated DLC Films

  • Chun, Hui-Gon;Oskomov, Konstantin V.;Sochugov, Nikolay S.;Lee, Jing-Hyuk;You, Yong-Zoo;Cho, Tong-Yul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Plasma generator based on non-self-sustained low-pressure arc discharge has been examined as a tool for deposition of highly-adhesive hydrogenated amorphous diamond-like carbon(DLC) films. Since the discharge is stable in wide range of gas pressures and currents, this plasma source makes possible to realize both plasma-immersion ion implantation(PIII) and plasma-immersion ion deposition(PIID) in a unified vacuum cycle. The plasma parameters were measured as functions of discharge current. Discharge and substrate bias voltage parameters have been determined for the PIII and PIID modes. For PIID it has been demonstrated that hard and well-adherent DLC coating are produced at 200-500 eV energies per deposited carbon atom. The growth rates of DLC films in this case are about 200-300 nm/h. It was also shown that short(∼60$\mu\textrm{s}$) high-voltage(> 1kV) substrate bias pulses are the most favorable for achieving high hardness and good adhesion of DLC, as well as for reducing of residual intrinsic stress are.

  • PDF

A Study on the Structure and Electrical Properties of CeO$_2$ Thin Film (CeO$_2$ 박막의 구조적, 전기적 특성 연구)

  • 최석원;김성훈;김성훈;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.469-472
    • /
    • 1999
  • CeO$_2$ thin films have used in wide applications such as SOI, buffer layer, antirflection coating, and gate dielectric layer. CeO$_2$takes one of the cubic system of fluorite structure and shows similar lattice constant (a=0.541nm) to silicon (a=0.543nm). We investigated CeO$_2$films as buffer layer material for nonvolatile memory device application of a single transistor. Aiming at the single transistor FRAM device with a gate region configuration of PZT/CeO$_2$ /P-Si , this paper focused on CeO$_2$-Si interface properties. CeO$_2$ films were grown on P-type Si(100) substrates by 13.56MHz RF magnetron sputtering system using a 2 inch Ce metal target. To characterize the CeO$_2$ films, we employed an XRD, AFM, C-V, and I-V for structural, surface morphological, and electrical property investigations, respectively. This paper demonstrates the best lattice mismatch as low as 0.2 % and average surface roughness down to 6.8 $\AA$. MIS structure of CeO$_2$ shows that breakdown electric field of 1.2 MV/cm, dielectric constant around 13.6 at growth temperature of 200 $^{\circ}C$, and interface state densities as low as 1.84$\times$10$^{11}$ cm $^{-1}$ eV$^{-1}$ . We probes the material properties of CeO$_2$ films for a buffer layer of FRAM applications.

  • PDF

Fabrication of 2-layer Flexible Copper Clad Laminate by Vacuum Web Coater with a Low Energy Ion Source for Surface Modification (저 에너지 표면 개질 이온원이 설치된 진공 웹 공정을 이용한 2층 flexible copper clad laminate 제작)

  • Choi, Hyoung-Wook;Park, Dong-Hee;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.509-515
    • /
    • 2007
  • In order to fabricate adhesiveless 2-layer flexible copper clad laminate (FCCL) used for COF (chip on film) with high peel strength, polyimide (PI; Kapton-EN, $38\;{\mu}m$) surface was modified by reactive $O_2^+$ and $N_2O^+$ ion beam irradiation. 300 mm-long linear electron-Hall drift ion source was used for ion irradiation with ion current density (J) higher than $0.5\;mA/cm^2$ and energy lower than 200 eV. By vacuum web coating process, PI surface was modified by linear ion source and then 10-20 nm thick Ni-Cr and 200 nm thick Cu film were in-situ sputtered as a tie layer and seed layer, respectively. Above this sputtered layer, another $8-9{\mu}m$ thick Cu layer was grown by electroplating and subsequently acid and base resistance and thermal stability were tested for examining the change of peel strength. Peel strength for the FCCLs treated by both $O_2^+$ and $N_2O^+$ ion irradiation showed similar magnitudes and increased as the thickness of tie layer increased. FCCL with Cu (200 nm)/Ni-Cr (20 nm)/PI structure irradiated with $N_2O^+$ at $1{\times}10^{16}/cm^2$ ion fluence was proved to have a strong peel strength of 0.73 kgf/cm for as-received and 0.34 kgf/cm after thermal test.

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Pedogenesis of Forest Soils(Kandiustalfs) Derived from Granite Gneiss in Southern Part of Korea (우리나라 남부지역(南部地域) 화강편마암질(花崗片麻巖質) 삼림토양(森林土壤)의 토양생성(土壤生成))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.186-199
    • /
    • 1997
  • The soils derived from granite gneiss occupy almost one third of the land area in Korea. The soils under forest vegetation, formed on granite gneiss, in Sun chon-shi, Chollanam-do in southern part of Korea, were studied to evaluate the weathering and the transformation of primary minerals into secondary minerals, clay minerals. The studied soils contained large amounts of ferromagnesian minerals, weathered biotites and were well weathered, strongly acid and low in organic matters and in ration exchange capacity. The clay contents in the Bt horizon were almost two times higher than those in the C horizon. The O horizon had a thin layer which consisted of a little decomposed plant components with a granic fabric and high porosity, and showed the micromorphological characteristics of moder humus. The related distribution pattern of the E horizon were enaulic and large amounts of silts and small amounts of sand grains were another characteristics of the E horizon. The most striking micromorphological features were multilaminated clay coating and infillings in the voids in the Bt and C horizons, and generally limpid ferriargillans ejected from the biotites and imparted red color to the soils in the Bt horizon. High clay contents in the Bt horizon was not only due to clay translocation, but also due to intensive in situ mineral weathering in this horizon. The most significant pedogenic process, revealed by the petrographic microscope and SEM, was the formation of iron oxides from biotites, the formation of tubular halloysites and the weathering models of biotites; wedge weathering and layer weathering. The thick coating on the weathering biotites showed the characteristics of the weathering process and the synthetic hematites were revealed in clays by TEM. Total chemical analysis of clays revealed extensive loss of Ca, and Na and the concentration of Fe and Al. Mineralogical studies of clays by XRD showed that micas were almost completely weathered to kaolinite, vermiculite-kaolinite intergrade, hematite, gibbsite, while halloysites from other primary minerals. Some dioctahedral mica appeared to be resistant in the soils. Parent rock of the soils contained a considerable amounts of biotites and this forest soils showed especially a dominant characteristics of biotite weathering.

  • PDF

Application of Cathodic Protection on Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.140-146
    • /
    • 2005
  • Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF