• 제목/요약/키워드: Low-dye

검색결과 518건 처리시간 0.023초

유기 태양전지 개발 동향 및 전망 (Development Trends and Perspectives of Organic Solar Cells)

  • 강문성;강용수
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.159-168
    • /
    • 2005
  • 염료감응 태양전지(dye-sensitized solar cells, DSCs)는 높은 광전효율과 값싼 제조비용의 매력을 가지고 있어 지난 10년간 활발히 연구되어왔다. 염료감응 태양전지의 에너지 전환은 광자를 흡수한 여기 상태 염료감응제의 나노결정 산화티타늄 반도체 전도대로의 전자 주입에 의해 발생된다. 이러한 염료감응 태양전지는 미래의 에너지 문제를 해결할 수 있는 유망한 청정재생 에너지원으로 기대된다. 본 총설에서는 염료감응 태양전지의 최근 개발 동향과 향후 전망에 대해 조사하였다.

A new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dye

  • Shokrollahzadeh, Soheila;Abassi, Masoud;Ranjbar, Maryam
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.513-520
    • /
    • 2019
  • In this investigation, nano ZnO was sonochemically synthesized by a novel method using a methionine precursor. A narrow size distribution (41-50 nm) of nano ZnO was achieved that was immobilized on perlite and applied as a catalyst in catalytic ozonation. The catalyst was characterized by fourier transform infrared spectroscopy, BET surface area, and field emission scanning electron microscope. The ozonation of recalcitrant Remazol black 5 (RB5) di-azo dye solution by means of the synthesized catalyst was investigated in a bubble column slurry reactor. The influence of pH values (7, 9, 11), catalyst dosage (8, 12, 15, $20g\;L^{-1}$) and reaction time (10, 20, 30, 60 min) was investigated. Although the dye color was completely removed by single ozonation at a higher reaction time, the applied nanocatalyst improved the dye declorination kinetics. Also, the degradation of the hazardous aromatic fraction of the dye was enhanced five-times by catalytic ozonation at a low reaction time (10 min) and a neutral pH. The second-order kinetics was best fitted in terms of both RB5 color and its aromatic fraction removal. The total organic carbon analysis indicated a significant improvement in the mineralization of RB5 by catalytic ozonation using the nano-ZnO/perlite catalyst.

저융점 복합사에 의해 열융착된 폴리에스테르 직물의 염색 - 헤드타이를 중심으로 - (Dyeing of Thermal Bonded Polyester Fabric by using Low-melting-point Bicomponent Filament Yarn - Head tie -)

  • 지명교;이신희
    • 한국의류산업학회지
    • /
    • 제11권4호
    • /
    • pp.661-666
    • /
    • 2009
  • The purpose of this study is to analyze the dyeability of polyester(PET) fabric by thermal bonding with low melting component of bicomponent fiber and to describe the change of physical properties of thermal bonded PET fabrics. The PET fabrics were prepared with regular PET fiber as warp and bicomponent fiber as weft. The bicomponent fiber of sheath-core type was composed with a regular PET core and low melting PET sheath. The thermal bonding of PET fabric was carried out in pin tenter($195^{\circ}C$) for 60 seconds. In this study, we investigated the dye ability and fastness of the dyed PET fabric. Dye ability of E-type dyestuff is higher than S-type dyestuff. In the case of E- type dyestuff, the saturated dyeing time was 10minutes at $130^{\circ}C$. The washing fastness and light fastness were excellent as 4-5grade.

저온소결법에 의한 플렉시블 염료감응 태양전지 (Flexible Dye-sensitized Solar Cells by a Low-temperature Sintering Method)

  • 백지혜;김주용;강위경
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.320-322
    • /
    • 2007
  • A new binder-free $TiO_{2}$ paste was prepared by common ion applying effect, enabling low temperature fabrication required for flexible solar cells. The binder-free and high viscosity $TiO_{2}$ coating solution was produced by adding 7.5% aniline in $TiO_{2}$ colloid solution obtained from the high pressure water-heat response method. The resulting pastes had high level of viscosities proper for optimal coating and thus revealed excellent performances in terms of thickness uniformity and I-V characteristics.

  • PDF

Low Temperature Synthesis of TiO2 Films for Application to Dye-sensitized Solar Cells

  • 위진성;최은창;서영호;홍병유
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.475-475
    • /
    • 2014
  • Dye sensitized solar cells (DSSCs) are regarded as potential inexpensive alternatives to conventional solid-state devices. The flexible version, employing conductive-plastic-film substrates, is appealing for commercialization of DSSCs because it not only reduces the weight and cost of the device but also extends their applications. However, the need for high temperature does not permit the use of plastic-film substrate. So, development of low-temperature methods is therefore realization of flexible DSSCs. In this work, the electrophoretic deposition combined with hydrothermal treatment was employed to prepare nanocrystalline $TiO_2$ thin film at low temperature. We confirmed the prepared $TiO_2$ thin films with different voltages and deposition times in the electrophoretic deposition process. Properties of the $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF

High Efficient and Stable Dye-sensitized Solar Cells (DSSCs) with Low Melting Point Glass Frits

  • 김종우;김동선;김형순
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • $TiO_2$ films were modified by adding a glass frit as a light scattering particle and applied to an anode electrode in dye-sensitized solar cells (DSSCs) to enhance the adhesion between $TiO_2$ and fluorine doped transparent oxide (FTO). Low melting point glass frits at contents of (3 to 7wt%) were added to the nano crystalline $TiO_2$ films. The light scattering properties, photovoltaic properties and microstructures of the photo electrodes were examined to determine the role of the low glass transition temperature ($T_g$) glass frit. Electrochemical impedance spectroscopy, Brunauer-Emmett-Teller method and scratch test were conducted to support the results. The DSSC with the $TiO_2$ film containing 3wt% low Tg glass frit showed optimal performance (5.1%, energy conversion efficiency) compared to the $TiO_2$-based one. The photocurrent density slightly decreased by adding 3wt% of the frit due to its large size and non conductivity. However, the decrease of current density followed by the decrease of electron transfer due to the large frit in $TiO_2$ electrode was compensated by the scattering effect, high surface area and reduced the electron transfer impedance at the electrolyte-dye-$TiO_2$ interface. The stability of the photo electrodes was improved by the frit, which chemically promoted the sintering of $TiO_2$ at relatively low temperature ($450^{\circ}C$).

  • PDF

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells

  • Md. Mahbubur, Rahman;Hyeong Cheol, Kang;Kicheon, Yoo;Jae-Joon, Lee
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.453-461
    • /
    • 2022
  • A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.

염료감응 태양전지를 위한 무금속 유기염료의 합성 (Synthesis of Metal-free Organic Dye for Dye-sensitized Solar Cell)

  • Pattarith, K.;Pungwiwat, N.;Laosooksathit, S.
    • 대한화학회지
    • /
    • 제55권2호
    • /
    • pp.279-282
    • /
    • 2011
  • 염료감을 태양전지(DSSC)는 대체에너지 집적제로서 낮은 생산단가로 고에너지 전환 효과를 볼 수 있다. 친환경적이며 효과가 큰 무금속 염료감응제의 개발이 중요하다. 본 연구에서 유기 감광제로 6,6'-(1,2,5-oxadiazole-3,4-diyl)dipyridine-2,4-dicarboxylic acid(3A)을 합성하였다. 이 감광제를 사용하여 광전환효율(${\eta}$)이 1.00%를 달성함을 발견하였다. 같은 조건에서 루테늄착물(N719)은 4.02%의 광전환효율을 나타내었다.

강유전체 BiFeO3가 증착된 TiO2 전극을 이용한 염료감응형 태양전지의 효율 향상 (Ferroelectric BiFeO3-coated TiO2 Electrodes for Enhanced Photovoltaic Properties of Dye-sensitized Solar Cells)

  • 주호용;홍수봉;이호상;전지훈;박배호;홍성철;최택집
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.198-203
    • /
    • 2013
  • Dye-sensitized solar cells (DSSCs) based on titanium dioxide ($TiO_2$) have been extensively studied because of their promising low-cost alternatives to conventional semiconductor based solar cells. DSSCs consist of molecular dye at the interface between a liquid electrolyte and a mesoporous wide-bandgap semiconductor oxide. Most efforts for high conversion efficiencies have focused on dye and liquid electrolytes. However, interface engineering between dye and electrode is also important to reduce recombination and improve efficiency. In this work, for interface engineering, we deposited semiconducting ferroelectric $BiFeO_3$ with bandgap of 2.8 eV on $TiO_2$ nanoparticles and nanotubes. Photovoltaic properties of DSSCs were characterized as a function of thickness of $BiFeO_3$. We showed that ferroelectric $BiFeO_3$-coated $TiO_2$ electrodes enable to increase overall efficiency of DSSCs, which was associated with efficient electron transport due to internal electric field originating from electric polarization. It was suggested that engineering the dye-$TiO_2$ interface using ferroelectric materials as inorganic modifiers can be key parameter for enhanced photovoltaic performance of the cell.

해도형 초극세 나일론 편성물의 산성 염료 종류에 따른 염색 및 견뢰도 (Dyeing and Fastness of Sea-island-type Ultrafine Nylon Knitted Fabric according to the Type of Acid Dye)

  • 조항성;심의진
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.135-145
    • /
    • 2022
  • In this study, the dyeability of 0.06-denier-per-filament (dpf) ultrafine sea-island-type nylon knitted fabric was investigated and compared with that of 1.0-dpf general nylon with respect to four types of dyes. In particular, leveling, milling, half-milling, and metal-complex dyes were compared at concentrations of 0.5%, 1.0%, 2.0%, 4.0%, and 8.0% on-weight-fabric (o.w.f). In each case, staining was performed at 100 ℃. The dyeabilities of the materials were compared in terms of the depth of color as defined by the ratio of the absorption coefficient (K) to the scattering coefficient (S). Results indicated generally low K/S values for both the 0.06-dpf ultrafine sea-island-type nylon and 1.0-dpf general nylon. In terms of the dye type, the milling and half-milling dyes exhibited K/S values of ≥20 for all colors of yellow, red, and blue for the 0.06-dpf ultrafine yarn sea-island-type nylon, which were superior to those of the other dye types. Hence, the milling and half-milling dyes are considered more suitable than the other dyes. Further, a comparison of dye fastness and compatibility revealed that the half-milling dye was the most suitable dye for the 0.06-dpf ultrafine sea-island-type nylon.