• Title/Summary/Keyword: Low-density parity-check(LDPC) decoder

Search Result 74, Processing Time 0.023 seconds

The Region-of-Interest Based Pixel Domain Distributed Video Coding With Low Decoding Complexity (관심 영역 기반의 픽셀 도메인 분산 비디오 부호)

  • Jung, Chun-Sung;Kim, Ung-Hwan;Jun, Dong-San;Park, Hyun-Wook;Ha, Jeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.79-89
    • /
    • 2010
  • Recently, distributed video coding (DVC) has been actively studied for low complexity video encoder. The complexity of the encoder in DVC is much simpler than that of traditional video coding schemes such as H.264/AVC, but the complexity of the decoder in DVC increases. In this paper, we propose the Region-Of-Interest (ROI) based DVC with low decoding complexity. The proposed scheme uses the ROI, the region the motion of objects is quickly moving as the input of the Wyner-Ziv (WZ) encoder instead of the whole WZ frame. In this case, the complexity of encoder and decoder is reduced, and the bite rate decreases. Experimental results show that the proposed scheme obtain 0.95 dB as the maximum PSNR gain in Hall Monitor sequence and 1.87 dB in Salesman sequence. Moreover, the complexity of encoder and decoder in the proposed scheme is significantly reduced by 73.7% and 63.3% over the traditional DVC scheme, respectively. In addition, we employ the layered belief propagation (LBP) algorithm whose decoding convergence speed is 1.73 times faster than belief propagation algorithm as the Low-Density Parity-Check (LDPC) decoder for low decoding complexity.

Quantization Performances and Iteration Number Statistics for Decoding Low Density Parity Check Codes (LDPC 부호의 복호를 위한 양자화 성능과 반복 횟수 통계)

  • Seo, Young-Dong;Kong, Min-Han;Song, Moon-Kyou
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.37-43
    • /
    • 2008
  • The performance and hardware complexity of LDPC decoders depend on the design parameters of quantization, the clipping threshold $c_{th}$ and the number of quantization bits q, and also on the maximum number of decoding iterations. In this paper, the BER performances of LDPC codes are evaluated according to the clipping threshold $c_{th}$ and the number of quantization bits q through the simulation studies. By comparing the quantized Min-Sum algorithm with the ideal Min-Sum algorithm, it is shown that the quantized case with $c_{th}=2.5$ and q=6 has the best performance, which approaches the idea case. The decoding complexities are calculated and the word error rates(WER) are estimated by using the pdf which is obtained through the statistical analyses on the iteration numbers. These results can be utilized to tradeoff between the decoding performance and the complexity in LDPC decoder design.

LLR Based Generalization of Soft Decision Iterative Decoding Algorithms for Block Turbo Codes (LLR 기반 블록 터보 부호의 연판정 복호 알고리즘 일반화)

  • Im, Hyun-Ho;Kwon, Kyung-Hoon;Heo, Jun
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1026-1035
    • /
    • 2011
  • This paper presents generalization and application for the conventional SISO decoding algorithm of Block Turbo Codes. R. M. Pyndiah suggested an iterative SISO decoding algorithm for Product Codes, two-dimensionally combined linear block codes, on AWGN channel. It wascalled Block Turbo Codes. Based on decision of Chase algorithm which is SIHO decoding method, SISO decoder for BTC computes soft decision information and transfers the information to next decoder for iterative decoding. Block Turbo Codes show Shannon limit approaching performance with a little iteration at high code rate on AWGN channel. In this paper we generalize the conventional decoding algorithm of Block Turbo Codes, under BPSK modulation and AWGN channel transmission assumption, to the LLR value based algorithm and suggest an application example such as concatenated structure of LDPC codes and Block Turbo Codes.

Soft Detection using QR Decomposition for Coded MIMO System (부호화된 MIMO 시스템에서 QR 분해를 이용한 효율적인 연판정 검출)

  • Zhang, Meixiang;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.535-544
    • /
    • 2012
  • Multi-Input Multi-Output (MIMO) transmission is now considered as one of essential techniques enabling high rate data transmissions in wireless communication systems. In addition, severe channel impairments in wireless systems should be compensated by using highly efficient forward error correction (FEC) codes. Turbo codes or low density parity check (LDPC) codes, using iterative decoding with soft decision detection information (SDDI), are the most common examples. The excellent performance of these codes should be conditioned on accurate estimation of SDDI from the MIMO detection process. In this paper, we propose a soft MIMO detection scheme using QR decomposition of channel matrices as an efficient means to provide accurate SDDI to the iterative decoder. The proposed method employed a two sequential soft MIMO detection process in order to reduce computational complexity. Compared to the soft ZF method calculating the direct inverse of the channel matrix, the complexity of the proposed method can be further reduced as the number of antennas is increased, without any performance degradation.