• Title/Summary/Keyword: Low-density lipoprotein receptor-related protein 6

Search Result 10, Processing Time 0.021 seconds

Conformational Dynamics of Sclerostin-LRP6 Complex Analyzed by HDX-MS

  • Jeong, Yejing;Kim, Jinuk;Choi, Hee-Jung;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.527-535
    • /
    • 2021
  • Sclerostin (SOST), a regulator of bone formation in osteocytes, inhibits the canonical Wnt signaling by interacting with low-density lipoprotein receptor-related protein 5/6 (LRP5/6) to prevent Wnt binding. Loss-of-function mutations of the SOST gene caused massive bone outgrowth and SOST-null mouse exhibited a high bone density phenotype. Therefore, SOST has been suggested as a promising therapeutic target for osteoporosis. A few previous studies with X-ray crystallography identified the binding interfaces between LRP6 and SOST, but there are limitations in these studies as they used truncated SOST protein or SOST peptide. Here, we analyzed the conformational dynamics of SOST-LRP6 E1E2 complex using hydrogen/deuterium exchange mass spectrometry (HDX-MS). We examined the effect of the C-terminal tail of SOST on LRP6 conformation upon complex formation. HDX-MS analysis suggested a new potential binding interface for the C-terminal region of SOST that was missing from the previous crystal structure of the SOST-LRP6 E1E2 complex.

Androgen Receptor-dependent Expression of Low-density Lipoprotein Receptor-related Protein 6 is Necessary for Prostate Cancer Cell Proliferation

  • Park, Eun;Kim, Eun Kyoung;Kim, Minkyoung;Ha, Jung Min;Kim, Young Whan;Jin, Seo Yeon;Shin, Hwa Kyoung;Ha, Hong Koo;Lee, Jeong Zoo;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.235-240
    • /
    • 2015
  • Androgen receptor (AR) signaling is important for prostate cancer (PCa) cell proliferation. Here, we showed that proliferation of hormone-sensitive prostate cancer cells such as LNCaP was significantly enhanced by testosterone stimulation whereas hormone-insensitive prostate cancer cells such as PC3 and VCaP did not respond to testosterone stimulation. Blocking of AR using bicalutamide abolished testosterone-induced proliferation of LNCaP cells. In addition, knockdown of AR blocked testosterone-induced proliferation of LNCaP cells. Basal expression of low-density lipoprotein receptor-related protein 6 (LRP6) was elevated in VCaP cells whereas stimulation of testosterone did not affect the expression of LRP6. However, expression of LRP6 in LNCaP cells was increased by testosterone stimulation. In addition, knockdown of LRP6 abrogated testosterone-induced proliferation of LNCaP cells. Given these results, we suggest that androgen-dependent expression of LRP6 plays a crucial role in hormone-sensitive prostate cancer cell proliferation.

Gene Targeting of Low Density Lipoprotein(LDL) Receptor Related Protein 5(LRP5) Involved in the Wnt Signaling Pathway

  • Jeong, Young-Hee;Kim, Suck-Ho;Kim, Dong-Ho;Moon, Seung-Ju;Tokuo Yamamoto;Kang, Man-Jong
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.82-82
    • /
    • 2002
  • The Wnt signaling pathway plays pivotal roles in embryonic development and oncogenesis through various signaling molecules inculding Frizzled receptor, recently characterized LRP5/6 and Dickkopf protein. Although Wnt signaling has been characterized in both developmental and oncogenic processes, little is known about its function in the normal adult. The ability of LRP5 to bind apolipoprotein E(apoE) and the abundant expression of LRP5 transcripts in hepatocytes, raise the possibility that LRP5 plays a role in the hepatic clearance of ApoE-containing chylomicron remonants, a major plasma lipoprotein carrying diet-derived cholesterol. (omitted)

  • PDF

The effects of Brassica juncea L. leaf extract on obesity and lipid profiles of rats fed a high-fat/high-cholesterol diet

  • Lee, Jae-Joon;Kim, Hyun A;Lee, Joomin
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.298-306
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Obesity is a global health problem of significant importance which increases mortality. In place of anti-obesity drugs, natural products are being developed as alternative therapeutic materials. In this study, we investigated the effect of Brassica juncea L. leaf extract (BLE) on fat deposition and lipid profiles in high-fat, high-cholesterol diet (HFC)-induced obese rats. MATERIALS/METHODS: Male Sprague-Dawley rats were divided into four groups (n = 8 per group) according to diet: normal diet group (ND), high-fat/high-cholesterol diet group (HFC), HFC with 3% BLE diet group (HFC-A1), and HFC with 5% BLE diet group (HFC-A2). Each group was fed for 6 weeks. Rat body and adipose tissue weights, serum biochemical parameters, and tissue lipid contents were determined. The expression levels of mRNA and proteins involved in lipid and cholesterol metabolism were determined by reverse transcription polymerase chain reaction and western blot analysis, respectively. RESULTS: The HFC-A2 group showed significantly lower body weight gain and food efficiency ratio than the HFC group. BLE supplementation caused mesenteric, epididymal, and total adipose tissue weights to decrease. The serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol were significantly reduced, and high-density lipoprotein cholesterol was significantly increased in rats fed BLE. These results were related to lower glucose-6-phosphate dehydrogenase, acetyl-coA carboxylase, and fatty acid synthase mRNA expression, and to higher expression of the cholesterol $7{\alpha}$-hydroxylase and low density lipoprotein-receptor, as well as increased protein levels of peroxisome proliferator-activated receptor ${\alpha}$. Histological analysis of the liver revealed decreased lipid droplets in HFC rats treated with BLE. CONCLUSIONS: Supplementation of HFC with 3% or 5% BLE inhibited body fat accumulation, improved lipid profiles, and modulated lipogenesis- and cholesterol metabolism-related gene and protein expression.

Changes in Human Gene Expression After Sleep Deprivation

  • Sun, Je Young;Kim, Jong Woo;Yim, Sung-Vin;Oh, Miae;Kang, Won Sub
    • Korean Journal of Biological Psychiatry
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Objectives Sleep is fundamental to maintaining homeostatic control and has behavioral and psychological effects on humans. To better understand the function and pathophysiology of sleep, specific gene expressions in reference to sleep deprivation have been studied. In this study, we investigated the gene expression of peripheral blood mononuclear cells after sleep deprivation to better understand the functional consequence of sleep. Methods In eight healthy men, 24 h sleep deprivation was induced. Blood was sampled at 14:00, before and after sleep deprivation. mRNA was isolated and analyzed via microarrays. cDNAs before and after sleep deprivation were coupled to Cy3 or Cy5, respectively, and normalized cDNAs were selected with a ratio greater than two as a significant gene. Results are expressed as mean. Results Among 41174 transcripts, 38852 genes were selected as reliable, and only a small minority (< 1%) of the genes were up-or down-regulated. Total six and eleven genes were selected as significant upregulated and downregulated genes, respectively. Protein tyrosine phosphatase receptor type O was most upregulated (6.9-fold), and low-density lipoprotein receptor-related protein 5-like protein showed the most substantial inhibition (0.06-fold). Conclusions This study showed significant associations between sleep deprivation and the immune system. Acute sleep deprivation affects pathways in proinflammatory cytokines as well as metabolic pathways of glutamate and purine, neurotransmitters related to sleep and wake cycle.

Effects of dietary n-6:n-3 polyunsaturated fatty acid ratio on growth performance, blood indexes, tissue fatty acid composition and the expression of peroxisome proliferator-activated receptor gamma signaling related genes in finishing pigs

  • Chen, Jing;Cui, Hongze;Liu, Xianjun;Li, Jiantao;Zheng, Jiaxing;Li, Xin;Wang, Liyan
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.730-739
    • /
    • 2022
  • Objective: This study investigated the effects of dietary n-6:n-3 polyunsaturated fatty acid (PUFA) ratio on growth performance, blood indexes, tissue fatty acid composition and the gene expression in finishing pigs. Methods: Seventy-two crossbred ([Duroc×Landrace]×Yorkshire) barrows (68.5±1.8 kg) were fed one of four isoenergetic and isonitrogenous diets with n-6:n-3 PUFA ratios of 2:1, 3:1, 5:1, and 8:1. Results: Average daily gain, average daily feed intake and gain-to-feed ratio had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The concentrations of serum triglyceride, total cholesterol and interleukin 6 were linearly increased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio, while that of high-density lipoprotein cholesterol tended to decrease (p = 0.062), and high-density lipoprotein cholesterol:low-density lipoprotein cholesterol ratio and leptin concentration were linearly decreased (p<0.05). The concentration of serum adiponectin had a quadratic response but the measurement was decreased and then increased (quadratic, p<0.05). The proportion of C18:3n-3 was linearly decreased (p<0.05) in the longissimus thoracis (LT) and subcutaneous adipose tissue (SCAT) as dietary n-6:n-3 PUFA ratio increasing, while the proportion of C18:2n-6 and n-6:n-3 PUFA ratio were linearly increased (p<0.05). In addition, the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase in the LT and SCAT, and adipocyte fatty acid binding protein and hormone-sensitive lipase (HSL) in the SCAT had quadratic responses but the measurements were increased and then decreased (quadratic, p<0.05). The expression of HSL in the LT was linearly decreased (p<0.05) with increasing of dietary n-6:n-3 PUFA ratio. Conclusion: Dietary n-6:n-3 PUFA ratio could regulate lipid and fatty acid metabolism in blood and tissue. Reducing dietary n-6:n-3 PUFA ratio (3:1) could appropriately suppress expression of related genes in PPARγ signaling, and result in improved growth performance and n-3 PUFA deposition in muscle and adipose tissue in finishing pigs.

Development of Low Density Lipoprotein Receptor-Related Protein 5 (LRP5) Gene Targeted Mouse (저밀도 리포단백질 수용체 관련 단백질 5(LRP5) 유전자 적중 생쥐의 개발)

  • Park H. Y.;Kim C. M.;Lee S. M.;Jeoung Y. H.;Moon S. J.;Kang M. J.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • The low density lipoprotein receptor-related protein 5 (LRP5) highly expressed in many tissues, including hepatocytes and pancreatic beta cells, can bind to apolipoprotein E. To evaluate in vivo roles of LRP5, we generated LRP5-deficient mice. LRP5 genomic DNA was isolated from TT2 embryonic stem (ES) cells. Targeting vector was constructed to disrupt an exon 18 of the mouse LRP5 gene and transfected into ES cells. Three homologous recombinants at LRP5 locus were identified from 178 G418-resistant clones. Chimeric males generated by morula aggregation technique were mated to C57BL/6 female mice. After achieving germ-line transmission, LRP5+/- females were crossed with LRP5+/- males to obtain LRP5-deficient mice. One line of mice lacking LRP5 gene was confirmed by Southern blotting. Such knock-out mice may serve as an effective animal model to study in vivo function of LRP5 gene.

Protective Effect of Rubus crataegifolius Extracts Against Obesity and Non-alcoholic Fatty Liver Disease via Promotion of AMPK/ACC/CPT-1 Pathway in HFD-induced C57BL/6J Obese Mice (HFD 유도 C57BL/6J 비만 mice에서 AMPK/ACC/CPT-1 경로 촉진을 통한 산딸기 추출물의 비만 및 비알코올성 지방간 질환에 대한 보호 효과)

  • Young Ik Lee;Hui Jin Lee;Su Jin Pyo;Yong Hyun Park;Myng Min Lee;Ho-Yong Sohn;Jin Sook Cho
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.967-977
    • /
    • 2023
  • Rubus crataegifolius (RC) is a traditional Asian medicinal plant belonging to the Rosaceae family. The fruits of RC are known to prevent adult diseases through antioxidants. In this study, the effects of RC extract (RCex) on obesity and nonalcoholic fatty liver disease (NAFLD) were evaluated in animal models. Twenty-eight male C57BL/6J mice were induced to become obese for 8 weeks and then the extract was orally administered for 8 weeks. RCex reduced body weight, adipose tissue, liver weight. RCex improved biochemical biomarkers including lipid metabolism (alanine aminotransferase (ALT), aspartate aminotransferase (AST), plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol). The activation of AMP-activated protein kinase (AMPK) reduced the expression of adipogenesis genes (liver × receptor (LXR), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthesis (FAS), acetyl-CoA carboxylase 1 (ACC1) and the effect of enhancing carnitine palmitoyltransferase (CPT) activity by RCex was verified. RCex also influence on plasma production of hormones (adiponectin & leptin) related on energy expenditure and metabolism. In addition, we confirmed that RCex improved glucose intolerance in HFD-induced obese rats. RCex was first demonstrated to have anti-obesity as well as anti-NAFLD effects by regulating fatty acid oxidation and fatty acid synthesis by phosphorylation of AMPK. This suggests that RCex could be a good supplement for the prevention of obesity and related NAFLD.

Fibrinogen mRNA Expression Up-Regulated in Follicular Cyst of Korean Cattle (한우 난포낭종에서 증가되는 섬유소원 유전자 발현)

  • Tak, Hyun-Min;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • Follicular cystic ovary (FCO) is one of the major causes of reproductive failure in cattle. Genetic alterations affect the function of diverse cells and/or tissues, which could be present in cystic ovaries. A microarray analysis was performed to screen differential gene expressions in follicular cystic follicles of cattle. In this study, we hypothesized that follicular cysts may be induced by changes in ion- and transporter-related gene expression. Microarray data showed that fibrinogen-gamma (FGG) and low density lipoprotein receptor-related protein 8 (LRP8) were up-regulated, while choline transporter-like protein 4 (SLC44A4), very long-chain acyl-CoA synthetase homolog 2 (SLC27A5), annexin 8 (ANXA8), and aquaporin 4 were down-regulated in follicular cystic follicles. A semi-quantitative RT-PCR was carried out to validate DEGs altered in follicular cystic follicles. Of six DEGs, three DEGs (FGG, SLC44A4, and aquaporin 4) showed a positive correlation between microarray and semi-quantitative PCR data. We focused on FGG, among three DEGs, which was highly up-regulated in follicular cystic follicles. The FGG mRNA was upregulated by 8.4-fold and by 1.7-fold in the bovine follicular cystic follicles as judged by microarray and RT-PCR analysis, respectively. However, there was no significant changes in the expression level of FGG protein in both follicular cystic follicles and granulosa cells isolated from follicular cystic follicles by Western blot analysis. Although this study does not reveal a positive correlation between the mRNA and protein level, FGG appears to be an important biomarker in the discrimination of follicular cyst from normal ovary.

Anti-Lipogenic Effect of Functional Cereal Samples on High Sucrose Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice (고당식이로 유도된 비알코올성 지방간 마우스에서 기능성 잡곡의 지질 대사 개선 효과)

  • Lee, Ko-Eun;Song, Jia-Le;Jeong, Byung-Jin;Jeong, Jong-Sung;Huh, Tae-Gon;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.789-796
    • /
    • 2016
  • The anti-lipogenic effect of cereal samples on high sucrose diet (HSD)-induced non-alcoholic fatty liver disease (NAFLD) in mice was studied. We divided C57BL/6 mice into various groups based on 8 weeks of treatment with three types of cereal samples (HSD+WR, HSD diet containing 40% white rice; HSD+MCG, HSD diet containing 40% mixed cereal grain; HSD+AO-MCG, HSD diet containing 40% mixed antiobesity-cereal grain). After the experimental period, body weight changes, liver weights, serum lipid profiles, and hepatic fatty acid metabolism-related gene expression levels were determined. We found that HSD+WR, HSD+MCG, and HSD+AO-MCG treatments reduced body weight and liver weight, especially HSD+MCG and HSD+AO-MCG effectively reduced levels of serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol. However, high density lipoprotein cholesterol levels increased compared to the control group. Furthermore, expression of hepatic lipogenic genes such as sterol regulatory element-binding protein-1c, acetyl-coenzyme A carboxylase, fatty acid synthase, stearoyl-coenzyme A desaturase-1, cluster of differentiation, and $PPAR-{\gamma}$ (peroxisome proliferator activated receptor ${\gamma}$) decreased, whereas expression of ${\beta}-oxidation$ genes such as $PPAR-{\alpha}$ and carnitine palmitoyl transferase-1 increased following HSD+MCG and HSD+AO-MCG treatment compared with levels in HSD+WR and control groups. These results suggest that the functional cereal samples, especially HSD+AO-MCG treatment, improved hepatic steatosis triggered by an HSD-induced imbalance in hepatic lipid metabolism.