• Title/Summary/Keyword: Low-carbon emissions

Search Result 301, Processing Time 0.029 seconds

A Study on the Isomorphization of ESG Activities of Large Korean Companies by Comparison of Carbon High-Emission and Carbon Low-Emission Industries (탄소 다배출 및 비다배출 업종 비교를 통한 국내 대기업의 ESG 활동 동형화 현상 연구)

  • Se Hoon Park;Chan Ha Ryu;Se Jin Park;Dong Pil Chun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.1-17
    • /
    • 2023
  • This study aimed to examine the characteristics of ESG activities among major domestic companies in the carbon-emitting industry compared to industries with lower emissions, as ESG has emerged as a significant agenda across various industries. Departing from the traditional focus on the "why" of ESG, which primarily centers around financial performance, this research sought to uncover the "how" of effective ESG management in domestic companies. The analysis involved studying the sustainability reports of 124 companies using the Global Reporting Initiative (GRI) indicators and comparing high-emitting and non-high-emitting industries. The findings revealed industry-specific patterns in companies' ESG activities, providing valuable insights for future ESG evaluations and assessments. Furthermore, the advancement of rating analysis methods holds implications for ESG rating agencies and financial authorities in terms of policy-making.

A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.

Problems of Decarbonization of the Economy of Kazakhstan

  • Yessekina, Bakhyt K.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.2 no.3
    • /
    • pp.37-39
    • /
    • 2015
  • In this article we consider the modern trends of global warming, GHG pollutions and discussions of the obligations of developed and developing countries before the UN Global Climate Summit in Paris. The article considers decarbonization as a national strategy, including complex tools for the improvement of energy efficiency, reduction of CO2 and development of emissions trading systems. The author underlines that the Central Asian countries such as Kazakhstan and Turkmenistan, have the largest GHG potential in the region, and for this reason they should be within the framework of the UNFCCC and join the international process on development of the national decarbonization strategies.Thesemeasuresallowthese countries to join the global carbon trade marketing, international financial recourses, and significantly reduce CO2 pollutions in the region.

Approach to Reduce CO2 by Renewable Fuel Cofiring for a Pulverized Coal Fired Boiler (신재생연료 혼소를 통한 미분탄 화력 발전소의 CO2 저감 방안 도출)

  • Kim, Taehyun;Choi, Sangmin;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.19-20
    • /
    • 2013
  • The cofiring of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would lead to reduce plant efficiency and flexibility in operation, and increase operation cost and capital cost associated with renewable fuels handling and firing equipment. The aim of this study is to investigate reduction of carbon dioxide at varying percentage of biomass in fuel blend to the boiler biomass, and estimate operation and capital cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as a renewable fuels for a cofiring with coal. Several approaches by the cofiring ratio are chosen from past plant demonstrations and commercial cofiring operation, and they are evaluated and discussed for CO2 reduction and cost estimation.

  • PDF

Pushing the Boundaries of Mass Timber Construction and Building Codes

  • Dubois, Jean-Marc;Frappier, Julie;Gallagher, Simon;Structures, Nordic
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.261-271
    • /
    • 2020
  • The 2020 National Building Code of Canada (NBC) and the 2021 International Building Code (IBC) both include Tall Wood Buildings (TWB) and are hailed as documents responsible for the proliferation of Mass Timber construction. Mass Timber construction is critical to reducing the carbon footprint of the construction industry; a sector acknowledged as being one of the greatest contributors of global annual CO2 emissions. Origine, a 13-storey multi-residential building erected in 2017 in a previously unsuitable site, is currently the tallest all-wood building in North America. This article describes the challenges overcome by the designers and client as they engaged with code officials, building authorities, and fire-service representatives to demonstrate the life-safety performance of this innovative building. It also traces the development of the "Guide for Mass Timber Buildings of up to 12 Storeys" published in Quebec and how it has enabled other significant Tall Wood projects across North America.

Molecular Emission of CF4 Gas in Low-pressure Inductively Coupled Plasma

  • Jung, T.Y.;Kim, D.H.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.373-375
    • /
    • 2006
  • $CF_4$ gas is one of the most common chemicals used for dry etching in semiconductor manufacturing processes. For application to the etching process and environmental control, the low-pressure inductively coupled plasma (LP-ICP) was employed to obtain the spectrum of $CF_4$ gas. In terms of the analysis of the spectra, trace CF radical by A-X and B-X transitions was detected. The other $CF_x$ radicals, such as $CF_2$ and $CF_3$, were not seen in this experiment whereas strong C and $C_2$ emissions, dissociation products of $CF_4$ gas, were observed.

A Study on Strategies of Public R&D to Achieve National Carbon Neutrality: Focusing on the Implications of the Republic of Korea

  • Song, Jaeryoung;Kim, Cheolhu
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 2022
  • Climate action is at the top of the agenda in the international community, as demonstrated at the 2021 G7 Summit and the 2021 UN Climate Summit. Major developed countries are scrambling to make a transition to a green economy and create a new growth momentum. Following the Paris Climate Agreement in 2016, they focus on "carbon neutrality" as an effective means of tackling climate change. The Republic of Korea, a high-carbon economy, submitted its second Nationally Determined Contribution and announced carbon neutrality as a top policy priority. Accordingly, the country increases government budget in research and development (R&D) and science and technology (S&T) policies. Against this backdrop, this study analyzed policies on carbon-neutral S&T and R&D in major advanced countries. The analysis was made by identifying globally pending issues in carbon-neutral policies and climate technology. In addition, focus group interviews were conducted six times with 10 experts to come up with three R&D strategies and action plans for government-funded research institutes to achieve carbon neutrality. To be specific, the following measures were suggested. First, creative and innovative R&D programs are required to solve the problem of carbon emissions. Second, it is necessary to establish carbon neutrality policies and infrastructure which are sustainable to run and manage. Third, it is crucial to promote cooperation in climate technology based on excellence. In conclusion, the strategies proposed in this study are expected to provide directions and implications for policymakers, researchers, and scholars in science and technology to develop effective strategies to achieve national carbon neutrality.

Trends and Interpretation of Life Cycle Assessment (LCA) for Carbon Footprinting of Fruit Products: Focused on Kiwifruits in Gyeongnam Region (과수의 탄소발자국 표지를 위한 LCA 동향 및 해석: 경남지역 참다래를 중심으로)

  • Deurer, Markus;Clothier, Brent;Huh, Keun-Young;Jun, Gee-Ill;Kim, In-Hea;Kim, Dae-Il
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • As part of a feasibility study for introducing carbon labeling of fruit products in Korea, we explore the use of carbon footprints for Korean kiwifruit from Gyeongnam region as a case study. In Korea, the Korean Environmental Industry and Technology Institute (KEITI) is responsible for the carbon footprint labeling certification, and has two types of certification programs: one program focuses on climate change response (carbon footprint labeling analysis) and the other on low-carbon products (reduction of carbon footprints analysis). Currently agricultural products have not yet been included in the program. Carbon labeling could soon be a prerequisite for the international trading of agricultural products. In general the carbon footprints of various agricultural products from New Zealand followed the methodology described in the ISO standards and conformed to the PAS 2050. The carbon footprint assessment focuses on a supply chain, and considers the foreground and the background systems. The basic scheme consists of four phases, which are the 'goal', 'scope', 'inventory analysis', and 'interpretation' phases. In the case of the carbon footprint of New Zealand kiwifruit the study tried to understand each phase's contribution to total GHG emissions. According to the results, shipping, orchard, and coolstore operation are the main life cycle stages that contribute to the carbon footprint of the kiwifruit supply chain stretching from the orchard in New Zealand to the consumer in the UK. The carbon emission of long-distance transportation such as shipping can be a hot-spot of GHG emissions, but can be balanced out by minimizing the carbon footprint of other life cycle phases. For this reason it is important that orchard and coolstore operations reduce the GHG-intensive inputs such as fuel or electricity to minimize GHG emissions and consequently facilitate the industry to compete in international markets. The carbon footprint labeling guided by international standards should be introduced for fruit products in Korea as soon as possible. The already established LCA methodology of NZ kiwifruit can be applied for fruit products as a case study.

A Study on the Environmental Effects of Improvement of Activated Carbon Adsorption Tower for the Application of Activated Carbon Co-Regenerated System in Sihwa/Banwal Industrial Complex (시화반월산업단지 활성탄 공동재생시스템 적용을 위한 활성탄 흡착탑 개선에 따른 환경적 효과분석)

  • Choi, Ye Jin;Rhee, Young Woo;Chung, Gu Hoi;Kim, Duk Hyun;Park, Seung Joon
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.160-167
    • /
    • 2021
  • This study investigated the environmental effects of improving the general-type activated carbon adsorption tower used at the Sihwa/Banwol Industrial Complex with use of a cartridge-type activated carbon adsorption tower for the application of an activated carbon co-regenerated system. Four general-type activated carbon adsorption towers and two cartridge-type activated carbon adsorption towers were selected to analyze the properties of activated carbon and to compare the efficiency of reducing environmental pollutants. The results showed that the activated carbon used in the cartridge-type activated carbon adsorption towers was high quality activated carbon with an iodine adsorption force of more than 800 mg/g and that a good adsorption performance was maintained within the replacement cycle. From an analysis of the environmental pollutant reduction efficiency, it was confirmed that the cartridge-type activated carbon adsorption tower functioned properly as a prevention facility for handling emissions pollutants with a treatment efficiency of total hydrocarbons (THC), toluene, and methylethylketone (MEK) components of 71%, 77%, and 80%, respectively. The general activated carbon adsorption tower, which was confirmed to use low-performance activated carbon, had a very low treatment efficiency and did not function properly as a prevention facility for dealing with emission pollutants. It is believed that it is possible to reduce pollutants during operations by changing from the general-type activated carbon adsorption tower to a cartridge-type activated carbon adsorption tower.

Diesel Combustion Strategies Effect on Exhaust Emissions and Hydrocarbon Species (디젤 연소 전략에 따른 배기가스 및 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.759-765
    • /
    • 2012
  • This study investigates the effect of diesel combustion strategies on exhaust emissions and hydrocarbon species emissions for a 1.7 L common rail direct injection diesel engine at 1500 rpm and 3.9 bar BMEP. The first strategy is a method to adopt no EGR with a split injection composed of pilot and main injection (split injection). The second is to adopt a moderate EGR rate with main injection only (single-1). The third is to use a high level of EGR and main injection with rail pressure increase, $i.e.$ low-temperature diesel combustion (single-2). Split injection and single-1 showed a renowned phenomenon of a PM-NOx trade-off, whereas single-2 was observed of a PM-NOx trade-off to reduce PM and NOx simultaneously. HC speciation results show that the split injection produced the least amount of HC species, regardless of the carbon number bin, followed by single-1 and single-2. The ratios of methane, acetylene, and CO to THC increased as a combustion A/F ratio is richer due to reduced oxygen content in the vicinity of the combustion zone, thus enhancing pyrolysis.