• 제목/요약/키워드: Low-alloy Steel

검색결과 381건 처리시간 0.023초

자동차 부품용 Fe계 저합금 분말 소결품의 마찰마모 특성 연구 (A Study on Tribological Characteristics of Sintered Fe-base Low Alloy Powder for Automobile Parts)

  • 김태현;김상윤;김태규
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.139-144
    • /
    • 2012
  • In the automobile industry, the various efforts to lower their industrial cost and enhance fuel efficiency have been made through process improvement or weight saving of automobile parts. Gear is one of significant parts of transmission, which is made by cast iron or alloy steel. It is expensive due to complex processing, inferior materials and large machining allowance. In this study, alternative gear cars oil which is based on fluid applications materials is produced by reducing surface induction hardening and carburizing hardened in production. And then, wear characteristic and mechanical properties such as hardness of the sintered alloy which is used as a substitute for small machining allowance is investigated.

다기공홈형 단속연삭지석의 개발에 관한 연구 (Development of Discontinuous Grinding Wheel with Multi-Porous Grooves)

  • 김정두
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.108-113
    • /
    • 1996
  • Conventionally, grinding of stainless steel, aluminium alloy, copper alloy, and titanum alloy is difficult due to the mechanical properties such as low hardness, high toughness which result in the loading of wheel and the poor surface finish. In order to grind this sort of materials easily, discontinuous grinding wheel with multi-porous grooves was newly developed. The multi-porous grooves were formed during wheel production. This discontinuous grinding wheel drastically increases the grinding performance. It is desirable to use the discontinuous grinding wheel when grinding materials with high efficiency and accuracy which is impossible by conventional wheels. In this paper, the construction and manufacturing method of grinding wheel with multi-porous grooves are explained. The grinding charateristics of discontinuous grinding wheel was also illustrated.

  • PDF

용접 입열량에 따른 저탄소형 TMCP 구조용 강재의 용접부 충격인성 및 미세조직 변화에 관한 연구 (A Study on the Impact Toughness and Microstructure change for Low carbon TMCP Structural Steel Alloy with Welding Heat Impact)

  • 권순두;이광학;박동환
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.101-102
    • /
    • 2004
  • This study was investigated on the impact toughness and microstructure of welded metal and heat affected zone for B grade steel. With welding procedures, welding heat inputs applied were 30, 79 and 264 kJ/cm, Prior austenite grain size in coarse zone has increased with increasing welding heat input for B grade steel. The toughness of fusion line zone of Bgrade steel has decreased with increasing welding heat input while the toughness fusion line +3 and +5 mm zone increased contrarily.

  • PDF

이종금속 피복용접부의 후열처리에 따른 탄소이동 해석 (Analysis of Carbon Migration with Post Weld Heat Treatment in Dissimilar Metal Weld.)

  • 김병철;안희성;김선진;송진태
    • 한국재료학회지
    • /
    • 제1권1호
    • /
    • pp.29-36
    • /
    • 1991
  • Pressurized Water Reactor (PWR) pressure vessels are made of forged low alloy steel plates internally clad with an austenitic stainless steel by welding to improve anti-corrosion properties. They display a characteristic behavior of dissimilar metal weld interface during post weld heat treatment (PWHT) and service at high temperature and pressure. In this Study, Metallugical structure of weld interface of SA 508 Class 3 forged steel clad with 309L, Austenitic stainless steel after PWHT was investigated. To estimate the width of the carburized/decarburized bands quantitatively, a model for carbon diffusion was proposed and a theoretical equation was derived.

  • PDF

API-581에 의한 정량적 위험기반검사에서 스테인리스강의 외부부식에 의한 사고발생 가능성 해석 (- Analysis of Likelihood of Failure for the External Corrosion of Stainless Steel through the Quantitative Risk Based Inspection Using API-581 -)

  • 이헌창;김환주;김태옥
    • 대한안전경영과학회지
    • /
    • 제6권3호
    • /
    • pp.99-107
    • /
    • 2004
  • Likelihood of failure (LOF) for the external corrosion of stainless steel, which affect to a risk of facilities, was analyzed quantitatively through the risk based inspection using API-581 BRD. We found that the technical module subfactor (TMSF) decreased as the inspection number increased and it increased as the inspection effectiveness and the used year increased, and that the TMSF showed high value for the case of the marine/cooling tower drift area as a corrosion driver, In this condition, the LOF for the external corrosion of stainless steel had lower than that for the carbon and low alloy steels

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

초탄성 거동을 고려한 NiTi 합금 튜브의 변형해석 (Finite Element Analysis of NiTi Alloy Tubes with the Superelastic Behavior)

  • 강우종
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.100-106
    • /
    • 2006
  • NiTi alloy known as its shape memory effect also has superelastic characteristic, which makes it possible to be elastic under large deformation. Since the tensile strength of the alloy is very high and density is low compared to carbon steel, it can be applied to lightweight structural design. In order to design structures with shape memory alloy, finite element analysis is used and a constitutive algorithm based on Aurrichio's model is added to LS-DYNA as a user subroutine. Explicit time integration and shell element formulation are used to simulate thin-walled structures. The algorithm uses Drucker-Prager type loading condition to calculate martensite volume fraction during the transformation. The implemented algorithm is verified in uni-axial loading condition and martensite phase transformation can be detected well with the algorithm. In this study, as a energy absorbing structure, thin-walled tube is modeled with finite elements and the deformation behavior is studied. Simulation results has shown that the martensite transformation was generated in loading condition. After plastic deformation reached, the load decreases linearly without reverse martensite transformation.

고온 환경에서 합금의 마모 및 마찰 특성에 관한 연구 (A Study on Wear Properties of Alloys in High Temperature Condition)

  • 최승윤;;김대은
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.24-29
    • /
    • 2019
  • In this work we investigated the friction and wear characteristics of a magnesium alloy, which has been receiving much attention as a light metal in industrial applications such as automobiles and aerospace. Magnesium is one of the lightest structural material that has high specific strength, lightweight, low density and good formability. However, current issue of using magnesium alloy is that magnesium has weakness against temperature. As the temperature increases, magnesium undergoes poor creep resistance and ease of softening, and therefore, its mechanical strength decreases sharply. To solve this issue, a new type of magnesium alloy that retains high strength at high temperature has been proposed. The tribological behavior of this alloy was investigated using a tribotester with reciprocating motion and heating plate. A stainless steel ball was used as a counter surface. Results showed that extrusion process has similar wear behavior to the commonly used casting process but retains good mechanical strength and durability. The presence of an alloying element enhanced the wear properties especially in high temperature. This study is expected to be utilized as fundamental data for the replacement of high density materials currently used in mechanical industries to a much lighter and durable heat-resistant materials.

Al 합금과 STD61강의 소착에 미치는 첨가원소 Fe, Mn의 영향 (Effects of Fe, Mn Contents on the Al Alloys and STD61 Steel Die Soldering)

  • 김유미;홍성길;최세원;김영찬;강창석
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.169-173
    • /
    • 2012
  • Recently, various attempts to produce a heat sink made of Al 6xxx alloys have been carried out using die-casting. In order to apply die-casting, the Al alloys should be verified for die-soldering ability with die steel. It is generally well known that both Fe and Mn contents have effects on decreasing die soldering, especially with aluminum alloys containing substantial amounts of Si. However, die soldering has not been widely studied for the low Si aluminum (1.0~2.0wt%) alloys. Therefore, in this study, an investigation was performed to consider how the soldering phenomena were affected by Fe and Mn contents in low Si aluminum alloys. Each aluminum alloy was melted and held at $680^{\circ}C$. Then, STD61 substrate was dipped for 2 hr in the melt. The specimens, which were air cooled, were observed using a scanning electron microscope and were line analyzed by an electron probe micro analyzer. The SEM results of the dipping soldering test showed an Al-Fe inter-metallic layer in the microstructure. With increasing Fe content up to 0.35%, the Al-Fe inter-metallic layer became thicker. In Al-1.0%Si alloy, the additional content of Mn also increased the thickness of the inter-metallic layer compared to that in the alloy without Mn. In addition, EPMA analysis showed that Al-Fe inter-metallic compounds such as $Al_2Fe$, $Al_3Fe$, and $Al_5Fe_2$ formed in the die soldering layers.

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.