• 제목/요약/키워드: Low-Water Depth

검색결과 673건 처리시간 0.039초

원뿔형 벤츄리수로의 수리특성 (Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone)

  • 김대근
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

A Comparative Study Between High and Low Infiltration Soils as Filter Media in Low Impact Development Structures

  • Guerra, Heidi B.;Geronimo, Franz Kevin;Reyes, Nash Jett;Jeon, Minsu;Choi, Hyeseon;Kim, Youngchul;Kim, Lee-Hyung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.130-130
    • /
    • 2021
  • The increasing effect of urbanization has been more apparent through flooding and downstream water quality especially from heavy rainfalls. In response, stormwater runoff management solutions have focused on runoff volume reduction and treatment through infiltration. However, there are areas with low infiltration soils or are experiencing more dry days and even drought. In this study, a lab-scale infiltration system was used to compare the applicability of two types of soil as base layer in gravel-filled infiltration systems with emphasis on runoff capture and suspended solids removal. The two types of soils used were sandy soil representing a high infiltration system and clayey soil representing a low infiltration system. Findings showed that infiltration rates increased with the water depth above the gravel-soil interface indicating that the available depth for water storage affects this parameter. Runoff capture in the high infiltration system is more affected by rainfall depth and inflow rates as compared to that in the low infiltration system. Based on runoff capture and pollutant removal analysis, a media depth of at least 0.4 m for high infiltration systems and 1 m for low infiltration systems is required to capture and treat a 10-mm rainfall in Korea. A maximum infiltration rate of 200 mm/h was also found to be ideal to provide enough retention time for pollutant removal. Moreover, it was revealed that low infiltration systems are more susceptible to horizontal flows and that the length of the structure may be more critical that the depth in this condition.

  • PDF

이앙시기 및 담수심 변화에 따른 논벼 수요량 변화 분석 (Analysis of Variance of Paddy Water Demand Depending on Rice Transplanting Period and Ponding Depth)

  • 조건호;최경숙
    • 한국농공학회논문집
    • /
    • 제63권3호
    • /
    • pp.75-85
    • /
    • 2021
  • This study evaluated variations in the paddy rice water demand based on the continuous changing in rice transplanting period and ponding depth at the four study paddy fields, which represent typical rice producing regions in Korea. Total 7 scenarios on rice transplanting periods were applied while minimum ponding depth of 0 and 20 mm were applied in accordance with maximum ponding depth ranging from 40 mm to 100 mm with 20 mm interval. The weather data from 2013 to 2019 was also considered. The results indicated that the highest rice water demand occurred at high temperature and low rainfall region. Increased rice transplanting periods showed higher rice water demand. The rice water demand for 51 transplanting days closely matched with the actual irrigation water supply. In case of ponding depth, the results showed that the minimum ponding depth had a proportional relationship with rice water demand, while maximum ponding depth showed the contrary results. Minimum ponding depth had a greater impact on rice water demand than the maximum ponding depth. Therefore, these results suggest that increasing the rice transplanting period, which reflects the current practice is desirable for a reliable estimation of rice water demand.

남극 브랜스필드 해협에서 침강입자의 금속원소 특성 (Behaviors of Metals in the Settling Particles in the Bransfield Strait, Antarctica)

  • 김동선;김동엽;김영준;강영철;심정희
    • Ocean and Polar Research
    • /
    • 제25권1호
    • /
    • pp.41-52
    • /
    • 2003
  • Sediment trap samples were collected to find out characteristic behaviors of metals in the settling particles by using time-series sediment traps at 678m and 1678m water depths in the Bransfield Strait from December 27th, 1999 to December 26th, 2000. Total mass fluxes at the intermediate water depth (678m water depth) were high in the austral summer and low in the austral winter, whereas at the deep water depth (1678m water depth) they showed high values in both the summer and winter. Total mass fluxes were generally higher in the deep water depth than in the intermediate water depth, which indicates that a substantial amount of sediments are laterally transported by strong currents into the deep basin from the shallow water depths. Aluminium contents also showed large seasonal variations with high values in the winter and low values in the summer. On the contrary, organic carbon contents were high in the summer and low in the winter. Al contents were negatively correlated with organic carbon contents, which may be ascribed that detrital particles are diluted by organic matter produced by phytoplankton in the surface waters. Metals measured in this study exhibited three characteristic behaviors; 1) a positive correlation with Al-Ti, Fe, Mn, V, Co, and Ba, 2) a negative correlation with Al-Cd and Zn, 3) no relationship with Al-Sr, Cu, Cr, Ni. Terrestrial materials may act as a major source fer metals that are positively correlated with Al, and organic matter may be a major source for metals that are negatively correlated with Al. Enrichment factor (EF) of Fe, Mn, Ba, Vi Co, Sr, Cr, and Ni ranged from 0.5 to 1.5, whereas EF of Zn, Cu, and Cd showed much higher values than 1.

Lateral Penetration of Water in Ray Parenchyma Cells of Castanea crenata

  • Ahmed, Sheikh Ali;Chong, Song-Ho;Chun, Su-Kyoung
    • 한국가구학회지
    • /
    • 제19권2호
    • /
    • pp.137-140
    • /
    • 2008
  • This experiment states the ultra pure distilled water penetration depth through ray parenchyma cell in radial direction of Castanea crenata. Heartwood penetration depth was 1.16 times lower than the depth in softwood and that difference was found statistically significant at 75.2 second of penetration. Following go-stop-go cycle, water penetrated in the ray parenchyma cell. At the beginning this speed was high and then it was decreased slowly. Water penetration depth result was compared with alcohol penetration depth. It was found that water penetration in ray parenchyma was found lower than alcohol due to the low surface tension of water.

  • PDF

남극 브랜스필드 해협에서 입자 플럭스 계절변화 (Seasonal Variations of Particle Fluxes in the Bransfield Strait, Antarctica)

  • 김동선;김동엽;김영준;강영철
    • Ocean and Polar Research
    • /
    • 제24권2호
    • /
    • pp.153-166
    • /
    • 2002
  • Particle fluxes were measured by using time-series sediment traps in the Bransfield Strait from December 27th, 1999 to December 26th, 2000. Total mass fluxes showed distinct seasonal variations with high fluxes in the austral summer and low fluxes in the austral winter at a 678m water depth in the eastern Bransfield Strait, while they were high only in January and fairly low in other months at a 960m water depth in the central Bransfield Strait. The reason that total mass fluxes occurred only in January at a 960m water depth in the central Bransfield Strait seems to be the strong current in the surface waters, which leads to a substantial amount of terrestrial materials and locally produced organic matter being advected away from the mooring site. Total mass fluxes were very high from January to October at a 1678m water depth in the eastern Bransfield Strait, while they were high only in January and February at a 1860m water depth in the central Bransfield Strait. The fact that total mass fluxes were higher at the deep water in the both sites than at the intermediate water depth may reflect that a substantial amount of terrestrial and organic materials are laterally transported by strong tidal current from the shallow environments to the deep basins.

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향 (Influence of a Warm Eddy on Low-frequency Sound Propagation in the East Sea)

  • 김봉채;최복경;김병남
    • Ocean and Polar Research
    • /
    • 제34권3호
    • /
    • pp.325-335
    • /
    • 2012
  • It is well known that sound waves in the sea propagates under the influence of sea surface and bottom roughness, the sound speed profile, the water depth, and the density of sea floor sediment. In particular, an abrupt change of sound speed with depth can greatly affect sound propagation through an eddy. Eddies are frequently generated in the East Sea near the Korean Peninsula. A warm eddy with diameter of about 150 km is often observed, and the sound speed profile is greatly changed within about 400 m of water depth at the center by the eddy around the Ulleung Basin in the East Sea. The characteristics of low-frequency sound propagation across a warm eddy are investigated by a sound propagation model in order to understand the influence of warm eddies. The acoustic rays and propagation losses are calculated by a range-dependent acoustic model in conditions where the eddy is both present and absent. We found that low-frequency sound propagation is affected by the warm eddy, and that the phenomena dominate the upper ocean within 800 m of water depth. The propagation losses of a 100 Hz frequency are variable within ${\pm}15$ dB with depth and range by the warm eddy. Such variations are more pronounced at the deep source near the sound channel axis than the shallow source. Furthermore, low-frequency sound propagation from the eddy center to the eddy edge is more affected by the warm eddy than sound propagation from the eddy edge to the eddy center.

2010년 동해 영덕 연안의 저염수 (Descriptive Analysis of Low Saline Water in Youngdeuk, the East Coast of Korea in 2010)

  • 최용규;권기영;양준용
    • 해양환경안전학회지
    • /
    • 제18권5호
    • /
    • pp.379-387
    • /
    • 2012
  • 동해 영덕 연안의 저염수를 보기 위하여 지난 2010년 격월별(2월 23일, 4월 6일, 6월 8일, 8월 19일, 10월 6일, 12월 20일)로 20개의 정점에서 CTD 관측을 수행하였다. 혼합층은 여름에 약 10 m 깊이로 얕았으며, 겨울에 약 20 m 깊이에서부터 저층까지 혼합층을 나타내었다. 연중 $5^{\circ}C$ 이하의 찬 물이 수온 약층 이심을 점하고 있었다. 염분 약층은 8월에는 깊이 20 m에, 10월에는 깊이 40 m에 분포하였으며 연중 가장 뚜렷하였다. 뚜렷한 저염수는 10월에 깊이 10 m에서 나타났는데, 10월에 강수량-증발량의 값이 음을 보였다, 이것은 10월에 영덕 연안에서 나타나는 저염수가 이류되어 온 것임을 시사하였다. 동해의 영덕 연안에서 나타나는 저염수는 동한 난류가 주요한 역할을 하는 것으로 보여진다.