• Title/Summary/Keyword: Low-Power System

Search Result 5,550, Processing Time 0.039 seconds

Development of Low Power Driven Inner Tap Inspection System capable of Wireless Communication with Video Equipment (영상기기와 무선통신이 가능한 저전력 구동의 이너탭 검사시스템 개발)

  • Ahn, Sung-Su
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.649-658
    • /
    • 2018
  • In this paper, we propose a mechanical contact inner tap inspection system that can inspect the defect of the inner tap immediately after inner tap is processed within the machining center. The inspection module has the collet chuck structure, so it can mounted on the main spindle of the machining center during inspection. It was developed with a focus on inspection for tap having 20 mm depth which is primarily fabricated in automotive parts and has a double sided PCB-type control system including sensing function based on Zigbee module, micom and IR sensor for wireless transmission of measured data with low power operation, and also a battery for supplying electric power. The current consumption is 46.8mA in the inspection operation mode and 0.0268mA in the power saving mode for 3.7V of the applied power source, so that 30,000 times or more inspection can be performed with assumed 5 seconds inspection time for one tap. Experiments in test jig system and actual machining center confirm that the proposed inner tap inspection system can be applied to the batch process of simultaneous inspection after tapping in the machining center.

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

Low-Delay, Low-Power, and Real-Time Audio Remote Transmission System over Wi-Fi

  • Hong, Jinwoo;Yoo, Jeongju;Hong, Jeongkyu
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.115-122
    • /
    • 2020
  • Audiovisual (AV) facilities such as TVs and signage are installed in various public places. However, audio cannot be used to prevent noise and interference from individuals, which results in a loss of concentration and understanding of AV content. To address this problem, a total technique for remotely listening to audio from audiovisual facilities with clean sound quality while maintaining video and lip-syncing through personal smart mobile devices is proposed in this paper. Through the experimental results, the proposed scheme has been verified to reduce system power consumption by 8% to 16% and provide real-time processing with a low latency of 120 ms. The system described in this paper will contribute to the activation of audio telehearing services as it is possible to provide audio remote services in various places, such as express buses, trains, wide-area and intercity buses, public waiting rooms, and various application services.

Simulation and Experiment of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션 및 실험)

  • Kwon, Sun-Hyung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2013
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. The simulation based on MATLAB/SIMULINK has validated at the transient state of the PMSG and an experiment using 3kW simulator has validated the LVRT control.

The Current and Power Waveform Improvement of an AC Motor with Low Pass LC Filter Driven by a Digital Bridge Inverter(I) (디지탈 브리지형 인버터로 구동되는 저역통과 LC 필터를 가진 교류전동기의 전류 및 전력의 파형 개선 (I))

  • 정주윤;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.107-118
    • /
    • 1995
  • The characteristics of the current waveforms and 3$\Phi$ power waveforms of the variable speed 3$\Phi$ AC motor system driven by the single-pulse PWM investigated in this paper. The system is composed of a digital bridge inverter and low pass LC filter. It is confirmed that current waveforms and 3$\Phi$ power waveforms can be improved by utilizing the high order low pass LC filter than that of lower order through computer simulation. Also, we propose the low pass LC filter revised from the conventional LC filter.

  • PDF

Single Sensor Charging System with MPPT Capability for Standalone Streetlight Applications

  • Osman, Siti Rahimah;Rahim, Nasrudin Abd.;Selvaraj, Jeyraj;Al-Turki, Yusuf A.
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.929-938
    • /
    • 2015
  • Maximum power point tracking (MPPT) and battery charging control are two important functions for a solar battery charger. The former improves utilization of the available solar energy, while the latter ensures a prolonged battery life. Nevertheless, complete implementation of both functions can be complex and costly, especially for low voltage application such as standalone street lamps. In this paper, the operation of a solar battery charger for standalone street light systems is investigated. Using only one voltage sensor, the solar charger is able to operate in both MPPT and constant voltage (CV) charging mode, hence providing high performance at a low cost. Using a lab prototype and a solar simulator, the operation of the charger system is demonstrated and its performance under varying irradiance is validated.

Study of Optimal Design Parameter for Gearbox on Wind Power System (풍력발전시스템용 증속기의 최적화 설계요소에 관한 연구)

  • 이근호;성백주;최용혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.737-741
    • /
    • 2003
  • The wind power system is spotlighted as one of the no-pollution power generation systems. The system uses winds as power source that are rotated the blade and the rotating power from blade generate the electricity power. Gearbox needs to transfer the wind powers that have the high-torque-low-speed characteristics to generator that have the low-torque-high-speed characteristics. Because the wind power system generally locates the remote place like seaside or mountainside and the gearbox installs on the limited and high placed space, the gearbox of the wind power system is required the optimal space design and high reliability. In this paper, the structure of the gearbox is proposed to achieve the optimal space and efficiency by compounding the planetary gear train that has the high power density and parallel type gear train that has the long service life. The design parameters that are affected the service life are studied. The gear ratio and face width are investigated as an affected parameter for design sensitivity of service life.

  • PDF

Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat (저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

Optimal Power Control Strategy for Wind Farm with Energy Storage System

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.726-737
    • /
    • 2017
  • The use of energy storage systems (ESSs) has become a feasible solution to solve the wind power intermittency issue. However, the use of ESSs increases the system cost significantly. In this paper, an optimal power flow control scheme to minimize the ESS capacity is proposed by using the zero-phase delay low-pass filter which can eliminate the phase delay between the dispatch power and the wind power. In addition, the filter time constant is optimized at the beginning of each dispatching interval to ensure the fluctuation mitigation requirement imposed by the grid code with a minimal ESS capacity. And also, a short-term power dispatch control algorithm is developed suitable for the proposed power dispatch based on the zero-phase delay low-pass filter with the predetermined ESS capacity. In order to verify the effectiveness of the proposed power management approach, case studies are carried out by using a 3-MW wind turbine with real wind speed data measured on Jeju Island.