• Title/Summary/Keyword: Low-Melting Point Metal

Search Result 64, Processing Time 0.031 seconds

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Alloy Design and Powder Manufacturing of Al-Cu-Si alloy for Low-Temperature Aluminum Brazing (저온 알루미늄 브레이징용 Al-Cu-Si-Sn 합금 설계 및 분말 제조)

  • Heeyeon Kim;Chun Woong Park;Won Hee Lee;Young Do Kim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.339-345
    • /
    • 2023
  • This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520℃. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515℃ following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.

Study of Manufacturing Jewelry Master Pattern by Using the DuraForm Rapid Prototyping Mold and the Low Melting Alloy (쾌속조형 듀라폼몰도와 저융점합금을 이용한 주얼리용 마스터패턴 제작에 관한 연구)

  • Joo, Young-Cheol;Song, Oh-Sung
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.265-270
    • /
    • 2002
  • A novel jewelry master pattern manufacturing process which reduce manufacturing steps by employing a Duraform rapid prototyping mold and a low melting alloy has been suggested. The novel process follows the steps of 'jewelry 3D CAD design ${\rightarrow}$ Durafrom RP mold ${\rightarrow}$ low melting alloy master pattern' while the previous process follows more complicated steps of 'jewelry idea sketch ${\rightarrow}$ detailed drawing ${\rightarrow}$ wax carving ${\rightarrow}$ flask ${\rightarrow}$ silver master pattern.' An upper and a lower part of molds have been manufactured of Duraform powder, of which melting point is $190^{\circ}C$. A maser pattern was manufactured by pouring a low melting alloy of Pb-Sn-Bi-Cd, so called Woods Metal, of which melting point is $70^{\circ}C$, into the mold. The master pattern is a shape of a disk of 20mm diameter that contains various design factors. The variations of dimensions, surface roughness, surface pore ratio were measured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of were maeasured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of low melting alloy has sufficient surface hardness, and surface pore ratio to be used as the jewelry master pattern.

Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals (저온 브레이징용 Al-Si-Cu 합금의 Sn 첨가에 따른 융점 및 기계적 특성 변화 연구)

  • Kim, Min Sang;Park, Chun Woong;Byun, Jong Min;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.376-381
    • /
    • 2016
  • For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.

Laser-assisted Selective Infiltration of tow Melting-point Metal Powders (저융점 금속분말 재료의 레이저 예열 선택적 용침)

  • H. Sohn;Lee, J. H.;J. Suh;D. Y. Yang
    • Laser Solutions
    • /
    • v.7 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • Laser-assisted selective infiltration is a new method of building metal layers to make metal parts layer by layer, in which superheated microscopic metal droplets are infiltrated into a laser-preheated layer of microscopic metal powders. In this work, the selective infiltration of a low melting-point metal, Sn-37Pb wt%, was conducted to investigate the effects of such dominant parameters as superheating temperature, Nd:YAG laser power for preheating, substrate temperature, etc. The optimal conditions for successful selective infiltration of a single layer of microscopic metal powder were experimentally obtained

  • PDF

Novel Maskless Bumping for 3D Integration

  • Choi, Kwang-Seong;Sung, Ki-Jun;Lim, Byeong-Ok;Bae, Hyun-Cheol;Jung, Sung-Hae;Moon, Jong-Tae;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.342-344
    • /
    • 2010
  • A novel, maskless, low-volume bumping material, called solder bump maker, which is composed of a resin and low-melting-point solder powder, has been developed. The resin features no distinct chemical reactions preventing the rheological coalescence of the solder, a deoxidation of the oxide layer on the solder powder for wetting on the pad at the solder melting point, and no major weight loss caused by out-gassing. With these characteristics, the solder was successfully wetted onto a metal pad and formed a uniform solder bump array with pitches of 120 ${\mu}m$ and 150 ${\mu}m$.

Design of Low-Melting Metal Fuse Elements of Current Sensing Type Protection Device for Large Capacity Secondary Battery Protection System (대용량 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 저융점 금속 가용체 설계)

  • Kim, Eun Min;Kang, Chang yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.427-432
    • /
    • 2018
  • High-capacity secondary batteries can cause explosion hazards owing to microcurrent variations or current surges that occur in short circuits. Consequently, complete safety cannot be achieved with general protection that is limited to a mere current fuse. Hence, in the case of secondary batteries, it is necessary for the protector to limit the inrush current in a short circuit, and to detect the current during microcurrent variations. To serve this purpose, a fuse can be employed for the secondary battery protection circuit with current detection. This study aims at designing a protection device that can stably operate in the hazardous circumstances associated with high-capacity secondary batteries. To achieve the said objective, a detecting fuse was designed from an alloy of low melting point elements for securing stability in abnormal current states. Experimental results show that the operating I-T and V-T characteristic constraints can be satisfied by employing the proposed current detecting self-contained low melting point fuse, and through the resistance of the heating resistor. These results thus verify that the proposed protection device can prevent the hazards of short circuit current surges and microcurrent variations of secondary batteries.

Rapid Manufacturing of Microscale Thin-walled Structures by Phase Change Workholding Method (상변화 고정방식에 의한 마이크로 박벽 구조물의 쾌속제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.188-193
    • /
    • 2005
  • To provide the various machining materials with excellent quality and dimensional accuracy, high -speed machining is very useful tool as one of the most effective rapid manufacturing processes. However, high-speed machining is not suitable for microscale thin-walled structures because of the lack of the structure stiffness to resist the cutting force. A new method which is able to make a very thin-walled structure rapidly will be proposed in this paper. This method is composed two processes, high-speed machining and filling process. Strong workholding force comes out of the solidification of filling materials. Low-melting point metal alloys are used in order to minimize the thermal effect during phase change and to hold arbitrary shape thin-walled structures quickly during high-speed machining. To verify the usefulness of this method, we will show some applications, for examples thin -wall cylinders and hemispherical shells, and compare the experimental results to analyze the dimensional accuracy of typical parts of the structures.

Rapid Manufacturing of Microscale Thin-walled Structures using a Phase Change Work-holding Method

  • Shin Bo-Sung;Yang Dong-Yol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.47-50
    • /
    • 2006
  • High-speed machining is a very useful tool and one of the most effective rapid manufacturing processes. This study sought to produce various high-speed machining materials with excellent quality and dimensional accuracy. However, high-speed machining is not suitable for microscale thin-walled structures because the structure stiffness lacks the ability to resist the cutting force. This paper proposes a new method that is able to rapidly produce very thin-walled structures. This method consists of high-speed machining followed by filling. A strong work-holding force results from the solidification of the filling materials. Low-melting point metal alloys are used to minimize the thermal effects during phase changes and to hold the arbitrarily shaped thin-walled structures quickly during the high-speed machining. We demonstrate some applications, such as thin-walled cylinders and hemispherical shells, to verify the usefulness of this method and compare the analyzed dimensional accuracy of typical parts of the structures.