DOI QR코드

DOI QR Code

Alloy Design and Powder Manufacturing of Al-Cu-Si alloy for Low-Temperature Aluminum Brazing

저온 알루미늄 브레이징용 Al-Cu-Si-Sn 합금 설계 및 분말 제조

  • Heeyeon Kim (Department of Materials Science and Engineering, Hanyang University) ;
  • Chun Woong Park (Department of Materials Science and Engineering, Hanyang University) ;
  • Won Hee Lee (Department of Materials Science and Engineering, Hanyang University) ;
  • Young Do Kim (Department of Materials Science and Engineering, Hanyang University)
  • 김희연 (한양대학교 신소재공학과) ;
  • 박천웅 (한양대학교 신소재공학과) ;
  • 이원희 (한양대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과)
  • Received : 2023.06.22
  • Accepted : 2023.08.09
  • Published : 2023.08.28

Abstract

This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520℃. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515℃ following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.

Keywords

Acknowledgement

이 논문은 2016년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(2016R1A6A1A03013422). 또한 이 논문은 2023년도 4단계 두뇌한국21사업(4단계 BK21 사업)에 의하여 지원되었음.

References

  1. A. Sharma, Y. S. Shin and J.-P. Jung: J. Weld. Join., 33 (2015) 1.
  2. W. Dai, S. Xue, J. Lou and S. Wang: Mater. Trans., 53 (2012) 1638.
  3. P. S. Amrutkar and S. R. Patil: Int. J. Eng. Adv. Technol., 2 (2013) 563.
  4. R. J. Yadav, K. S. Pilyal, D. Gupta and S. Sharma: Int. J. Appl. Eng. Res., 14 (2019) 60.
  5. D. P. Sekulic and Y. Flom: Advances in Brazing: Science, Technology and Applications, D. P. Sekulic (Ed.), Woodheda Publishing, UK (2013) 441.
  6. Y. Yang, Y. Chen, J. Zhang, X. Gu, P. Qin, N. Dai, X. Li, J.-P. Kruth and L.-C. Zhang: Mater. Des., 146 (2018) 239.
  7. T. Hattori, S. Sakai, A. Sakamoto and C. Fujiwara: Weld. J., 73 (1994) 233.
  8. P. Moghimian, T. Poirie, M. Habibnejad-Korayem, J. A. Zavala, J. Kroeger, F. Marion and F. Larouche: Addit. Manuf., 43 (2021) 102017.
  9. Y. Zhang, F. Wei, J. Mao and G. Niu: Mater. Charact., 158 (2019) 109963.
  10. C. E. Roberts, D. Bourell, T. Watt and J. Cohen: Phys. Procedia., 83 (2016) 909.
  11. S. Chand, A. Gaur, K. Rakha and U. Batra: Mater. Today. Proc., 62 (2022) 7574.
  12. W. F. Miao and D. E. Laughlin: Metall. Mater. Trans. A, 31 (2000) 361.
  13. N. Okano, N. Takata, A. Suzuki and M. Kobashi: Mater. Trans., 64 (2023) 492.
  14. H. Yang, X. Liu, A. Li, R. Li, S. Xu, M. Zhang, P. Yu, S. Yu, M. Jiang, C. Huo and G. Li: J. Alloys. Compd., 964 (2023) 171226.
  15. Y. Li, Y. Tan, J. Li, Q. Xu and Y. Liu: J. Alloys. Compd., 583 (2014) 85.
  16. F. R. Elsayed, T. T. Sasaki, C. L. Mendis, T. Ohkubo and K. Hono: J. Mater. Sci. Eng. A, 566 (2013) 22.
  17. Q. Luo, M. Cong, H. Li, L. Zhu, H. Chen and Q. Li: J. Alloys. Compd., 948 (2023) 169724.
  18. G. R. Zare, M. Divandari and H. Arabi: J. Mater. Sci. Technol., 29 (2013) 190.
  19. B. C. Sousa, C. Walde, V. K. Champagne, A. T. Nardi, R. D. Sisson and D. L. Cote: Coatings, 10 (2020) 1035.