• 제목/요약/키워드: Low-Level Wind Shear

검색결과 13건 처리시간 0.018초

항공기 기상관측자료(AMDAR)를 이용한 인천국제공항 저고도 급변풍 예측시스템 검증 (Verification of Low-Level Wind Shear Prediction System Using Aircraft Meteorological Data Relay (AMDAR))

  • 석재혁;최희욱;김근회;이상삼;이용희
    • 한국항공운항학회지
    • /
    • 제31권3호
    • /
    • pp.59-70
    • /
    • 2023
  • In order to predict low-level wind shear at Incheon International Airport (RKSI), a Low-Level Wind Shear prediction system (KMAP-LLWS) along the runway take-off and landing route at RKSI was established using Korea Meteorological Administration Post-Processing (KMAP). For the performance evaluation, the case of low-level wind shear cases calculated from Aircraft Meteorological Data Relay (AMDAR) from July 2021 to June 2022 was used. As a result of verification using the performance evaluation index, POD, FAR, CSI, and TSS were 0.5, 0.85, 0.13, and 0.34, respectively, and the prediction performance was improved by POD, CSI, and TSS compared to the Low-Level Wind Shear prediction system (LDPS-LLWS) calculated using the Korea Meteorological Administration's Local Data Assimilation and Prediction System (LDAPS). This means that the use of high-resolution numerical models improves the predictability of wind changes. In addition, to improve the high FAR of KMAP-LLWS, the threshold for low-level wind shear strength was adjusted. As a result, the most effective low-level wind shear threshold at 8.5 knot/100 ft was derived. This study suggests that it is possible to predict and respond to low-level wind shear at RKSI. In addition, it will be possible to predict low-level wind shear at other airports without wind shear observation equipment by applying the KMAP-LLWS.

고해상도 수치모델을 이용한 제주국제공항 저층급변풍 예측 (Prediction of Low Level Wind Shear Using High Resolution Numerical Weather Prediction Model at the Jeju International Airport, Korea)

  • 김근회;최희욱;석재혁;김연희
    • 한국항공운항학회지
    • /
    • 제29권4호
    • /
    • pp.88-95
    • /
    • 2021
  • In aviation meteorology, the low level wind shear is defined as a sudden change of head windbelow 1600 feet that can affect the departing and landing of the aircraft. Jeju International Airport is an area where low level wind shear is frequently occurred by Mt. Halla. Forecasting of such wind shear would be useful in providing early warnings to aircraft. In this study, we investigated the performance of statistical downscaling model, called Korea Meteorological Administration Post-processing (KMAP) with a 100 m resolution in forecasting wind shear by the complex terrain. The wind shear forecasts was produced by calculating the wind differences between stations aligned with the runways. Two typical wind shear cases caused by complex terrain are validated by comparing to Low Level Wind Shear Alert System (LLWAS). This has been shown to have a good performance for describing air currents caused by terrain.

제주국제공항 저층급변풍 발생 특성 및 예측 성능 (Low Level Wind Shear Characteristics and Predictability at the Jeju International Airport)

  • 김근회;최희욱;석재혁;이상삼;이용희
    • 한국항공운항학회지
    • /
    • 제31권3호
    • /
    • pp.50-58
    • /
    • 2023
  • Sudden wind changes at low altitudes pose a significant threat to aircraft operations. In particular, airports located in regions with complex terrain are susceptible to frequent abrupt wind variations, affecting aircraft takeoff and landing. To mitigate these risks, Low Level Wind shear Alert System (LLWAS) have been implemented at airports. This study focuses on understanding the characteristics of wind shear and developing a prediction model for Jeju International Airport, which experiences frequent wind shear due to the influence of Halla Mountain and its surrounding terrain. Using two years of LLWAS data, the study examines the occurrence patterns of wind shear at Jeju International Airport. Additionally, high-resolution numerical model is utilized to produce forecasted information on wind shear. Furthermore, a comparison is made between the predicted wind shear and LLWAS observation data to assess the prediction performance. The results demonstrate that the prediction model shows high accuracy in predicting wind shear caused by southerly winds.

항공기 복행사례를 통한 제주국제공항 저층 윈드시어의 특징 연구 (A Study on the Characteristics of Low-Level Wind Shear at Jeju International Airport from Go-Around Flight Perspective)

  • 조진호;백호종
    • 한국항공운항학회지
    • /
    • 제29권1호
    • /
    • pp.1-8
    • /
    • 2021
  • Low level wind shear, which often occurs at Jeju International Airport, is a phenomenon that occurs when the topological location and topographical characteristics of Jeju Island are combined with weather characteristics. Low level wind shears, which are caused by rapid changes in wind direction and wind speed, pose a threat to aircraft safety and also cause abnormal situations, such as aircraft go-around, diversion, and cancellation. Many meteorological studies have been conducted on weather patterns, occurrence periods and frequency of low level wind shears. However, researches related to aircraft operations are limited where here we study the similarities and differences between strong southwest winds and bidirectional tailwind type low level wind shears based on aircraft go-around cases at Jeju International Airport. The results are expected to be used to enhance safety when operating to Jeju International Airport, which includes pilot training that reflects the characteristics generated by wind changes, pilot prior notification, providing pilots with latest trends, and increasing extra fuel.

고해상도 KMAPP 자료를 활용한 제주국제공항에서 저층 윈드시어 예측 (Low-Level Wind Shear (LLWS) Forecasts at Jeju International Airport using the KMAPP)

  • 민병훈;김연희;최희욱;정형세;김규랑;김승범
    • 대기
    • /
    • 제30권3호
    • /
    • pp.277-291
    • /
    • 2020
  • Low-level wind shear (LLWS) events on glide path at Jeju International Airport (CJU) are evaluated using the Aircraft Meteorological Data Relay (AMDAR) and Korea Meteorological Administration Post-Processing (KMAPP) with 100 m spatial resolution. LLWS that occurs in the complex terrains such as Mt. Halla on the Jeju Island affects directly aircraft approaching to and/or departing from the CJU. For this reason, accurate prediction of LLWS events is important in the CJU. Therefore, the use of high-resolution Numerical Weather Prediction (NWP)-based forecasts is necessary to cover and resolve these small-scale LLWS events. The LLWS forecasts based on the KMAPP along the glide paths heading to the CJU is developed and evaluated using the AMDAR observation data. The KMAPP-LLWS developed in this paper successfully detected the moderate-or-greater wind shear (strong than 5 knots per 100 feet) occurred on the glide paths at CJU. In particular, this wind shear prediction system showed better performance than conventional 1-D column-based wind shear forecast.

A Case Study on Heavy Rainfall Using a Wind Profiler and the Stability Index

  • Hong, Jongsu;Jeon, Junhang;Ryu, Chansu
    • 통합자연과학논문집
    • /
    • 제8권3호
    • /
    • pp.221-232
    • /
    • 2015
  • In this study, the vertical characteristics of wind were analyzed using the horizontal wind, vertical wind, and vertical wind shear, which are generated from a wind profiler during concentrated heavy rain, and the quantitative characteristics of concentrated heavy rain were analyzed using CAPE, SWEAT, and SRH, among the stability indexes. The analysis of the horizontal wind showed that 9 cases out of 10 had a low level jet of 25 kts at altitudes lower than 1.5 km, and that the precipitation varied according to the altitude and distribution of the low-level jet. The analysis of the vertical wind showed that it ascended up to about 3 km before precipitation. The analysis of the vertical wind shear showed that it increased up to a 1 km altitude before precipitation and had a strong value near 3 km during heavy rains. In the stability index analysis, CAPE, which represents thermal buoyancy, and SRH, which represents dynamic vorticity, were used for the interpretation of the period of heavy rain. As SWEAT contains dynamic upper level wind and thermal energy, it had a high correlation coefficient with concentrated-heavy-rain analysis. Through the case studies conducted on August 12-13, 2012, it was confirmed that the interpretation of the prediction of the period of heavy rain was possible when using the intensive observation data from a wind profiler and the stability index.

沿岸境界層에서의 表層風의 日變化 (Diurnal Variation of the Surface Wind in the Coastal Boundary Layer)

  • 최효
    • 한국해양학회지
    • /
    • 제19권2호
    • /
    • pp.210-216
    • /
    • 1984
  • 5년간의 시간별 풍속 자료를 이용하여 연안 표층풍의 일변화가 분석되었다. 특히 내륙으로 부는 바람 (onshore flow)이 지배적인 계절에는 야간 최대풍의 최대 출현 빈도가 자정에 나타났다. 연평균 남풍 계열을 갖는 야간 최대풍은 북풍 계열 보다 약 3배이상의 출현을 보여준다. 중림의 대기 안정도가 연안에 지배적이므로 바람이 해양에서 내륙으로 불 경우는 (offshore flow) 상승된 전선역전층과 지표역전층에 의해 형성된 전단력(shear flow)이 연안경계층으로 전이되어 야간 연안 최대표층풍이 형성된다.

  • PDF

Development Mechanisms of Summertime Air Mass Thunderstorms Occurring in the Middle Region of South Korea

  • Kim, K.E.;Heo B.H.;Lee, H.R.;Min, K.D.
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제23권1호
    • /
    • pp.34-38
    • /
    • 1995
  • A diagnostic study on the summertime air mass thunderstorms occurring in the middle region of South Korea was made by analyzing the data of surface and upper air observations as well as the surface and upper level weather charts. The key parameters used in the present study are the amount of precipitable water below 850 hPa level, the vertical profiles of water vapor content and wind, and both the temperature difference and the equivalent potential temperature difference between 850 hPa and 700 hPa levels. It is found from this study that the summertime air mass thunderstorms in the middle region of South Korea can be classified into two distinct types, type I and type II. The thunderstorms of type I occur under the atmospheric conditions of high moisture content, low vertical wind shear in low levels, and conditional instability between 850 hPa and 700 hPa levels. On the other hand, the thunderstorms of type II occur under the atmospheric conditions of less moisture content, higher wind shear and conditional instability. Furthermore, our study suggests that atmospheric instability and the amount of water vapor below 850 hPa level are complementary in the development of air mass thunderstorms. The complementary nature between these two parameters may be an explanation for the thunderstorm development in the areas of low atmospheric water vapor content such as the plains of eastern Colorado.

  • PDF

Potential wind power generation at Khon Kaen, Thailand

  • Supachai, Polnumtiang;Kiatfa, Tangchaichit
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.385-394
    • /
    • 2022
  • The energy demand of the world is increasing rapidly, mainly using fossil energy, which causes environmental damage. The wind is free and clean energy to solve the environmental problems. Thailand is one of the developing nations, and the majority of its energy is obtained from petroleum, natural gas and coal. The objective of this study is to test the characteristics of wind energy at Khon Kaen in Thailand. The wind measurement tools, the 3-cup anemometers to measure wind speed, and wind vanes to measure wind direction, were mounted on a wind tower mast to record wind data at the heights of 60, 90 and 120 meters above ground level (AGL) for 5 years between January 2012 and December 2016. The results show that the annual mean wind speeds were 3.79, 4.32 and 4.66 m/s, respectively. The highest mean wind speeds occurred in June, August and December, in order, and the lowest occurred in September. The majority of prevailing wind directions were from the North-East and South-West directions. The average annual wind shear coefficient was 0.297. Furthermore, five wind turbines with rated power from 0.85 to 4.5 MW were selected to estimate the wind energy output and it was found that the maximum AEP and CF were achieved from the low cut-in speed and high hub-height wind turbines. This important information will help to develop wind energy applications, such as the plan to produce electricity and the calculation of the wind load that affects tall and large structures.

Observations of Coastal Upwelling at Ulsan in summer 1997

  • Lee, Jae-Chul;Kim, Dae-Hyun;Kim, Jeong-Chang
    • Journal of the korean society of oceanography
    • /
    • 제38권3호
    • /
    • pp.122-134
    • /
    • 2003
  • Low-pass filtered time series of wind, coastal temperature, sea level and current were analyzed to understand the coastal upwelling processes in the southeast coast of Korea. Southerly winds favorable for coastal upwelling were dominant in summer of 1997. Total period of four major wind events amounts to 58 days during one hundred days from June to early September. Coastal temperature is most sensitive to variations of wind. The time lag between the onset of southerly (northerly) winds and decrease (increase) of temperature is 3-18 hours. In the frequency domain the coherent bands have periods of 2.4 and 4.0-5.4 days with respective phase lags of 17 and 27-37 hours. Despite the sensitive response, the magnitude of temperature change is not quantitatively proportional to the intensity or duration of the wind, because it depends on the degree of baroclinic tilting of isotherms built dynamically by the strong Tsushima Warm Current (TWC). Current is particularly strong near the coast and has a large vertical shear during the upwelling periods, which is associated with the baroclinic tilting. Both of current and sea level are poorly coherent with wind or temperature except for the period of 4 days.