• Title/Summary/Keyword: Low-Energy Electron Beam

Search Result 141, Processing Time 0.026 seconds

Comparative study on the specimen thickness measurement using EELS and CBED methods

  • Yoon-Uk Heo
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.8.1-8.7
    • /
    • 2020
  • Two thickness measurement methods using an electron energy loss spectroscopy (EELS) and 10a convergent beam electron diffraction (CBED) were compared in an Fe-18Mn-0.7C alloy. The thin foil specimen was firstly tilted to satisfy 10a two-beam condition. Low loss spectra of EELS and CBED patterns were acquired in scanning transmission electron microscopy (STEM) and TEM-CBED modes under the two-beam condition. The log-ratio method was used for measuring the thin foil thickness. Kossel-Möllenstedt (K-M) fringe of the $13{\ba{1}}$ diffracted disk of austenite was analyzed to evaluate the thickness. The results prove the good coherency between both methods in the thickness range of 72 ~ 113 nm with a difference of less than 5%.

Boron Nitride Films Grown by Low Energy Ion Beam Assisted Deposition

  • Park, Young-Joon;Baik, Young-Joon;Lee, Jeong-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.129-133
    • /
    • 2000
  • Boron nitride films were synthesized with $N_2$ion flux of low energy, up to 100 eV, at different substrate temperatures of no heating, 200, 400, 500, and $800^{\circ}C$, respectively. Boron was supplied by e-beam evaporation at the rate of $1.5\AA$/sec. For all the conditions, hexagonal BN (h-BN) phase was mainly synthesized and high resolution transmission electron microscopy (HRTEM) showed that (002) planes of h-BN phase were aligned vertical to the Si substrate. The maximum alignment occurred around $400^{\circ}C$. In addition to major h-BN phase, transmission electron diffraction (TED) rings identified the formation of cubic BN (c-BN) phase. But HRTEM showed no distinct and continuous c-BN layer. These results suggest that c-BN phase may form in a scattered form even when h-BN phase is mainly synthesized under small momentum transfer by bombarding ions, which are not reconciled with the macro compressive stress model for the c-BN formation.

  • PDF

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

The Impact Properties and Wear Resistance of Polybutylene terephthalate (PBT) Cross-linked by Electron Beam Irradiation (전자선 가교된 PBT의 충격 특성 및 내마모 특성 연구)

  • Shin, Bum Sik;Ko, Keum Jin;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • Poly(butylenes terephthalate) have made large strides in applications of injection, extrusion, and molding material due to their excellent thermal resistance and appropriate mechanical properties. However, PBT was not hard polymer but a soft polymer which caused low absorption of external energy and the defect of being easily broken with the strong impact. Thus, the electron beam irradiation was carried out over a range of irradiation doses from 100 to 1,000 kGy for enhancing the properties. The decreases of $T_m$, $T_c$, and enthalpy were observed as increasing the absorbed dose in the results of DSC analysis. The improvement in the impact strength of PBT was clearly observed as the absorbed dose was increased. This was probably due to the 3-dimensional network structures, resulting in increasing the absorption of impact energy. In addition, the wear properties had increased at higher than 300 kGy. The negative deviation of weight loss confirmed the improvement of the wear properties of PBT, as evidenced by SEM observation on the wear surfaces.

Monte Carlo Simulation of Phytosanitary Irradiation Treatment for Mangosteen Using MRI-based Geometry

  • Oh, Se-Yeol;Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • Purpose: Phytosanitary irradiation treatment can effectively control regulated pests while maintaining produce quality. The objective of this study was to establish the best irradiation treatment for mangosteen, a popular tropical fruit, using a Monte Carlo simulation. Methods: Magnetic resonance image (MRI) data were used to generate a 3-D geometry to simulate dose distributions in a mangosteen using a radiation transport code (MCNP5). Microsoft Excel with visual basic application (VBA) was used to divide the image data into seed, flesh, and rind. Radiation energies used for the simulation were 10 MeV (high-energy) and 1.35 MeV (low-energy) for the electron beam, 5 MeV for X-rays, and 1.25 MeV for gamma rays from Co-60. Results: At 5 MeV X-rays and 1.25 MeV gamma rays, all areas (seeds, flesh, and rind) were irradiated ranging from 0.3 ~ 0.7 kGy. The average doses decreased as the number of fruit increased. For a 10 MeV electron beam, the dose distribution was biased: the dose for the rind where the electrons entered was $0.45{\pm}0.03$ kGy and the other side was $0.24 {\pm}0.10$ kGy. Use of an electron kinetic energy absorber improved the dose distribution in mangosteens. For the 1.35 MeV electron beam, the dose was shown only in the rind on the irradiated side; no significant dose was found in the flesh or seeds. One rotation of the fruit while in front of the beam improved the dose distribution around the entire rind. Conclusion: These results are invaluable for determining the ideal irradiation conditions for phytosanitary irradiation treatment of tropical fruit.

Low Energy Ion-Surface Reactor

  • Choi, Won-Yong;Kang, Tae-Hee;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 1990
  • Ion-surface collision studies at low kinetic energies (1-100 eV) provide a unique opportunity for investigating reactions and collision dynamics at surfaces. A special ion optics system for generating an energy- and mass-selected ion beam of this energy is designed and constructed. An ultrahigh vacuum (UHV) reaction chamber, in which the ions generated from the beamline collide with a solid surface, is equipped with Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS) as in-situ surface analytical tools. The resulting beam from the system has the following characteristics : ion current of 5-50 nA, energy spread < 2eV, current stability within ${\pm}5%,$ and unit mass resolution below 20 amu. The performance of the instrument is illustrated with data representing the implantation behavior of $Ar^+$ into a graphite (0001) surface.

Electrical Properties of Metal-Oxide Quantum dot Hybrid Resistance Memory after 0.2-MeV-electron Beam Irradiation

  • Lee, Dong Uk;Kim, Dongwook;Kim, Eun Kyu;Pak, Hyung Dal;Lee, Byung Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.311-311
    • /
    • 2013
  • The resistance switching memory devices have several advantages to take breakthrough for the limitation of operation speed, retention, and device scale. Especially, the metal-oxide materials such as ZnO are able to fabricate on the flexible and visible transparent plastic substrate. Also, the quantum dots (QDs) embedded in dielectric layer could be improve the ratio between the low and the high resistance becauseof their Coulomb blockade, carrier trap and induced filament path formation. In this study, we irradiated 0.2-MeV-electron beam on the ZnO/QDs/ZnO structure to control the defect and oxygen vacancy of ZnO layer. The metal-oxide QDs embedded in ZnO layer on Pt/glass substrate were fabricated for a memory device and evaluated electrical properties after 0.2-MeV-electron beam irradiations. To formation bottom electrode, the Pt layer (200 nm) was deposited on the glass substrate by direct current sputter. The ZnO layer (100 nm) was deposited by ultra-high vacuum radio frequency sputter at base pressure $1{\times}10^{-10}$ Torr. And then, the metal-oxide QDs on the ZnO layer were created by thermal annealing. Finally, the ZnO layer (100 nm) also was deposited by ultra-high vacuum sputter. Before the formation top electrode, 0.2 MeV liner accelerated electron beams with flux of $1{\times}10^{13}$ and $10^{14}$ electrons/$cm^2$ were irradiated. We will discuss the electrical properties and the physical relationships among the irradiation condition, the dislocation density and mechanism of resistive switching in the hybrid memory device.

  • PDF

A Study on the Optical Transmittance of High-energy Electron-beam Irradiated IGZO Thin Films (고 에너지 전자빔 조사된 IGZO 박막의 광 투과도에 대한 연구)

  • Yun, Eui-Jung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.71-77
    • /
    • 2014
  • In this paper, we investigated the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of InGaZnO (IGZO) films grown on transparent Corning glass substrates, with a radio frequency magnetron sputtering technique. The IGZO thin films deposited at low temperature were treated with HEEBI in air at room temperature (RT) with an electron beam energy of 0.8 MeV and doses of $1{\times}10^{14}-1{\times}10^{16}electrons/cm^2$. The optical transmittance of the IGZO films was measured using an ultraviolet visible near-infrared spectrophotometer (UVVIS). The detailed estimation process for separating the transmittance of HEEBI-treated IGZO films from the total transmittance of IGZO films on transparent substrates treated with HEEBI is given in this paper. Based on the experimental results, we concluded that HEEBI with an appropriate dose of $10^{14}electrons/cm^2$ causes a maximum increase in the transparency of IGZO thin films. We also concluded that HEEBI treatment with an appropriate dose shifted the optical band gap ($E_g$) toward the lower energy region from 3.38 to 3.31 eV. This $E_g$ shift suggested that HEEBI in air at RT with an appropriate dose acts like a thermal annealing treatment in vacuum at high temperature.

A Study on clinical Considerations caused by inevitably Extended SSD for Electron beam therapy (확장된 SSD에 기인한 Electron beam의 Output 및 특성 변화에 관한 연구)

  • Lee, Jeong-U;Kim, Jeong-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 1996
  • We are often faced with the clinical situations that is inevitably extended SSD for electron beam therapy due to anatomical restriction or applicator structure. But there are some difficulties in accurately predicting output and properties. In electron beam treatment , unlike photon beam the decrease in output for extended SSD does not follow inverse-square law accurately because of a loss of side scatter equilibrium, which is particularly significant for small cone size and low energies. The purpose of our study is to analyze the output in changing with the energy, cone size, air gap beyond the standard SSD and to compare inverse-square law factor derived from calculated effective SSD, mominal SSD with measured output factor. In addition, we have analyzed the change of PDD for several cones with different SSDs which range from 100cm to 120cm with 5cm step and with different energies(6MeV, 9MeV, 12MeV, 16MeV, 20MeV). In accordance with our study, an extended SSD produces a significant change in beam output, negligible change in depth dose which range from 100cm to 120cm SSDs. In order to deliver the more accurate dose to the neoplastic tissue, first of all we recommend inverse-square law using the table of effective SSDs with cone sizes and energies respectively or simply to create a table of extended SSD air gap correction factor. The second we need to have an insight into some change of dose distribution including PPD, penumbra caused by extended SSD for electron beam therapy.

  • PDF

Growth and structure of $CeO_2$ films by oxygen-plasma-assisted molecular beam epitaxy (산소 플라즈마에서의 분자살 적층성장에 의한 $CeO_2$ 박막의 성장과 구조)

  • ;S.A. Chambers
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.16-23
    • /
    • 2000
  • The epitaxial growth of $CeO_2$ films has been investigated on three different substrates-Si(111), $SrTiO_3$(001), and MgO(001)-over wide range of growth parameters using oxygen-plasma-assisted molecular beam epitaxy. Pure-phase, single-crystalline epitaxial films of $CeO_2$ (001) have been grown only on $SrTiO_3$(001). We discuss the growth conditions in conjunction with the choice of substrates required to synthe-size this oxide, as well as the associated characterization by menas of x-ray diffraction, reflection high-energy electron diffraction, low-energy electron diffraction, and x-ray photoelectron spectroscopy and diffraction. Successful growth of single crystalline $CeO_2$ depends critically on the choice of substrate and is rather insensitive to the growth conditions studied in this investigation. $CeO_2$(001) films on $SrTiO_3$exhibit the sturcture of bulk $CeO_2$ without surface reconstructions. Ti outdiffusion is observed on the films grown temperatures above $650^{\circ}C$.

  • PDF