The experimental verification of treatment planning on the treatment spot is the ultimate method to assure quality of radiotherapy, so in-vivo skin dose measurement is the essential procedure to confirm treatment dose. In this study, glass rod dosimeter (GRD), which is a kind of photo-luminescent based dosimeters, was studied to produce a guideline to use GRDs in vivo dosimetry for quality assurance of radiotherapy. The pre-processing procedure is essential to use GRDs. This is a heating operation for stabilization. Two kinds of pre-processing methods are recommended by manufacturer: a heating method (70 degree, 30 minutes) and a waiting method (room temperature, 24 hours). We equally irradiated 1.0 Gy to 20 GRD elements, and then different preprocessing were performed to 10 GRDs each. In heating method, reading deviation of GRDs at same time were relatively high, but the deviation was very low as time went on. In waiting method, the deviation among GRDs was low, but the deviation was relatively high as time went on. The meaningful difference was found between mean reading values of two pre-processing methods. Both methods present mean dose deviation under 5%, but the relatively high effect by reading time was observed in waiting method. Finally, GRD is best to perform in-vivo dosimetry in the viewpoint of accuracy and efficiency, and the understanding of how pre-processing affect the accuracy is asked to perform most accurate in-vivo dosimetry. The further study is asked to acquire more stable accuracy in spite of different irradiation conditions for GRD usage.
Computed tomographic scan as a screening procedures in asymptomatic individuals has seen a steady increase with the introduction of multiple-raw detector CT scanners. This report provides a brief review of the current controversy surrounding CT cancer screening, with a focus on the radiation induced cancer risks and clinical efficacy. 1. A large study of patients at high risk of lung cancer(the National Lung Screening Trial[NLST]) showed that CT screening reduced cancer deaths by 20%(1.33% in those screened compared with 1.67% in those not screened). The rate of positive screening tests was 24.2% and 96.4% of the positive screening results in the low-dose CT group were false-positive. Radiation induced lung cancer risk was estimated the most important in screening population because ERR of radiation induced lung cancer does not show the decrease with increasing age and synergistic connection between smoking and radiation risk. Therefore, the radiation risk may be on the same order of magnitude as the benefit observed in the NLST. Optimal screening strategy remain uncertain, CT lung cancer screening is not yet ready for implementation. 2. Computed tomographic colonography is as good as colonoscopy for detecting colon cancer and is almost as good as colonoscopy for detecting advanced adenomas, but significantly less sensitive and specific for smaller lesions and disadvantageous for subsequent therapeutic optical colonoscopy if polyps are detected. The average effective dose from CT colonography was estimated 8-10 $mS{\nu}$, which could be a significant dose if administered routinely within the population over many years. CT colonography should a) achieve at least 90% sensitivity and specificity in the size category from 6 and 10 mm, b) offer non-cathartic bowl preparation and c) be optimized and standardized CT parameters if it is to be used for mass screening. 3. There is little evidence that demonstrates, for whole-body scanning, the benefit outweighs the detriment. This test found large portion of patient(86~90.8%) had at least one abnormal finding, whereas only 2% were estimated to have clinically significant disease. Annual scans from ages 45 to 75 years would accrue an estimated lifetime cancer mortality risk of 1.9%. There is no group within the medical community that recommends whole-body CT. No good studies indicate the accuracy of screening CT, at this time. The benefit/risk balance for any of the commonly suggested CT screening techniques has yet to be established. These areas need further research. Therefore wild screening should be avoided.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2001.05c
/
pp.43-46
/
2001
Polymers are widely used as insulating materials at various part of power industry. However, electrical properties of these polymers are easily degraded with their working environments, especially radiation areas. In this research, radiation degradation of low density polyethylene (LDPE) used as cable insulation was evaluated with thermoluminescence characteristics. LDPE was irradiated with gamma ray up to 1000 kGy at a dose rate of 5 kGy/hr in the presence of air at room temperature. Each of the irradiated samples were carried out thermoluminescence analysis as a function of temperature. Interrelationships between thermoluminescence and dielectric characteristics and volume resistivity are investigated as well. The results of thermoluminescence analysis showed that those would be significant factors for evaluation of radiation degradation.
In this study, we fabricated effect of storage conditions on graft of polypropylene (PP) non-woven fabric induced by electron beam. The electron beam irradiations on PP non-woven fabric were carried out over a range of irradiation doses from 25 to 100 kGy to make free radicals on fabric surface. The radical measurement was established by electron spin resonance (ESR) for confirming the changes of the alkyl radical and peroxy radical according to effect of storage time, storage temperature and atmosphere. It was observed that the free radicals were increased with irradiation dose and decreased with storage time due to the continuous oxidation. However, the radical extinction was significantly delayed due to reduced mobility of radicals at extremely low temperature. The degree of graft based on the analysis of ESR was investigated. The conditions of graft reaction were set at a temperature: $60^{\circ}C$, reaction time: 6 hours and styrene monomer concentration: 20 wt%.
Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.
Lee, Geon Ho;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Du Sang;Ahn, Min Woo;Jeon, Myeong Soo
The Journal of Korean Society for Radiation Therapy
/
v.31
no.1
/
pp.51-56
/
2019
Purpose: The usefulness of using single-electron radiation for secondary radiotherapy of breast cancer patients after surgery is assessed and the use of a combine of different energy. Methods and materials : In this study, 40 patients (group A) using energy 6 MeV and 9 MeV, and 19 patients (group B) using a combine of 9 MeV and 12 MeV were studied among 59 patients who performed secondary care using combine electronic radiation. Each patient in each group, 6 MeV, 9 MeV, Combine(6 MeV / 9 MeV) and 9 MeV, 12 MeV, Combine (9 MeV / 12 MeV) were developed in different ways, and the maximum doses delivered to the original hospital, D95, D5, and $V_3$, $V_5$, $V_{10}$ were compared. Result: The D95 mean value of Group A treatment plan was $785.33{\pm}225.37cGy$, $1121.79{\pm}87.02cGy$ at 9 MeV, and $1010.98{\pm}111.17cGy$ at 6 MeV / 9 MeV, and the mean value at 6 MeV / 9 MeV was most appropriate for the dose. The mean values of the low dose area $V_3$ and $V_5$ in the lung of the breast direction being treated were $3.24{\pm}3.49%$ and $0.72{\pm}1.55%$ at 6 MeV, the highest 9 MeV at $7.25{\pm}4.59%$, $3.07{\pm}2.64%$, the lowest at 6 MeV. Maximum and average lung dose was $727.78{\pm}137.27cGy$ at 6 MeV / 9 MeV, $49.16{\pm}24.44cGy$, highest 9 MeV at $998.97{\pm}114.35cGy$, $85.33{\pm}41.18cGy$, and lowest 6 MeV at $387.78{\pm}208.88cGy$, $9.27{\pm}6.60cGy$. The value of $V_{10}$ was all close to zero. Group B appeared in the pattern of Group A. Conclusion: Relative differences in low-dose areas of the lungs $V_3$ and $V_5$ were seen and were most effective in the dose transfer of tumor bed in the application of combined energy. It is thought that the method of using electronic energy in further radiation treatments for breast cancer is a more effective way to use the energy effect of limiting energy resources, and that if you think about it again, it could be a little more beneficial radiation treatment for patients.
Journal of the Korean Society of Food Science and Nutrition
/
v.28
no.5
/
pp.1076-1081
/
1999
Physicochemical, microbiological, and sensory properties of barleys irradiated by gamma ray at 1.2kGy, 10.1kGy, or 30.5kGy were investigated every 40 days during the storage at 25℃ and 50% relative humidity. Moisture content of the irradiated barleys decreased but crude lipid content increased during the storage. TBA values increased in proportion to the irradiation dose and to the storage period. In Hunter's color, L, a, and b values of 30.5kGy dose irradiated barleys were higher than those of the non irradiated barleys right after irradiation and this trend continued during the storage. Numbers of mesophilic and psychrophilic bacteria in the non irradiated barleys and 1.2kGy dose irradiated barleys were higher than those in the barleys irradiated at 10.1kGy and 30.5kGy during the storage. Numbers of yeasts and molds in the irradiated and non irradiated barleys were low and they did not greatly increase during the storage. In sensory evaluation, acidic odor of the barleys was strong at the 10.1kGy and 30.5 kGy dose irradiation but barley odor and humid odor were not significantly different among the groups depending upon the radiation dose and storage period.
Intrinsic viscosity of starch irradiated with Co-60 (0.25-9.1 kGy) significantly decreased, and swelling power and solubility measured at $80^{\circ}C$ linearly increased with increasing irradiated dose. Radiation treatment up to 1 kGy increased amylose content of starch. Water-binding capacity increased rapidly up to 3 kGy. Peak viscosity of irradiated starches by Rapid visco Analyser and Visco/amylo/Graph indicated that the decrease in peak viscosity was dose-dependent. Gamma irradiation showed no effect on endothermic temperatures of irradiated starches, but decreased endothermic enthalpy with increasing dose level. Viscosity of starch autoclaved at $120^{\circ}C$ and air-dried significantly decreased with increasing irradiation dose. Resistant starch content slightly decreased upon irradiation.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.18
no.4
/
pp.537-548
/
2020
Currently, radioactive waste for disposal has been restricted to low and intermediate level radioactive waste generated during operation of nuclear power plants, and these radioactive wastes were managed and disposed of the 200 L and 320 L of steel drums. However, it is expected that it will be difficult to manage a large amount of decommissioning waste of the Kori unit 1 with the existing drums and transportation containers. Accordingly, the KORAD is currently developing various and large-sized containers for packaging, transportation, and disposal of decommissioning waste. In this study, the radiation exposure doses of workers and the public were evaluated using RADTRAN computational analysis code in case of the domestic on-road transportation of new package and transportation containers under development. The results were compared with the domestic annual dose limit. In addition, the sensitivity of the expected exposure dose according to the change in the leakage rate of radionuclides in the waste packaging was evaluated. As a result of the evaluation, it was confirmed that the exposure dose under normal and accident condition was less than the domestic annual exposure dose limit. However, in the case of a number of loading and unloading operations, working systems should be prepared to reduce the exposure of workers.
In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy Photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for $^{60}Co$ and $^{137}Cs$ photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.