• Title/Summary/Keyword: Low-Dose Radiation

Search Result 944, Processing Time 0.031 seconds

Reading Deviations of Glass Rod Dosimeters Using Different Pre-processing Methods for Radiotherapeutic in-vivo Dosimetry (유리선량계의 전처리 방법이 방사선 치료 선량 측정에 미치는 영향)

  • Jeon, Hosang;Nam, Jiho;Park, Dahl;Kim, Yong Ho;Kim, Wontaek;Kim, Dongwon;Ki, Yongkan;Kim, Donghyun;Lee, Ju Hye
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2013
  • The experimental verification of treatment planning on the treatment spot is the ultimate method to assure quality of radiotherapy, so in-vivo skin dose measurement is the essential procedure to confirm treatment dose. In this study, glass rod dosimeter (GRD), which is a kind of photo-luminescent based dosimeters, was studied to produce a guideline to use GRDs in vivo dosimetry for quality assurance of radiotherapy. The pre-processing procedure is essential to use GRDs. This is a heating operation for stabilization. Two kinds of pre-processing methods are recommended by manufacturer: a heating method (70 degree, 30 minutes) and a waiting method (room temperature, 24 hours). We equally irradiated 1.0 Gy to 20 GRD elements, and then different preprocessing were performed to 10 GRDs each. In heating method, reading deviation of GRDs at same time were relatively high, but the deviation was very low as time went on. In waiting method, the deviation among GRDs was low, but the deviation was relatively high as time went on. The meaningful difference was found between mean reading values of two pre-processing methods. Both methods present mean dose deviation under 5%, but the relatively high effect by reading time was observed in waiting method. Finally, GRD is best to perform in-vivo dosimetry in the viewpoint of accuracy and efficiency, and the understanding of how pre-processing affect the accuracy is asked to perform most accurate in-vivo dosimetry. The further study is asked to acquire more stable accuracy in spite of different irradiation conditions for GRD usage.

Review of the Radiation Risk and Clinical Efficacy Associated with Computed Tomography Cancer Screening (암의 조기발견을 위한 CT촬영에서의 임상적 효능과 방사선위해에 대한 고찰)

  • Kim, Hyun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.214-227
    • /
    • 2013
  • Computed tomographic scan as a screening procedures in asymptomatic individuals has seen a steady increase with the introduction of multiple-raw detector CT scanners. This report provides a brief review of the current controversy surrounding CT cancer screening, with a focus on the radiation induced cancer risks and clinical efficacy. 1. A large study of patients at high risk of lung cancer(the National Lung Screening Trial[NLST]) showed that CT screening reduced cancer deaths by 20%(1.33% in those screened compared with 1.67% in those not screened). The rate of positive screening tests was 24.2% and 96.4% of the positive screening results in the low-dose CT group were false-positive. Radiation induced lung cancer risk was estimated the most important in screening population because ERR of radiation induced lung cancer does not show the decrease with increasing age and synergistic connection between smoking and radiation risk. Therefore, the radiation risk may be on the same order of magnitude as the benefit observed in the NLST. Optimal screening strategy remain uncertain, CT lung cancer screening is not yet ready for implementation. 2. Computed tomographic colonography is as good as colonoscopy for detecting colon cancer and is almost as good as colonoscopy for detecting advanced adenomas, but significantly less sensitive and specific for smaller lesions and disadvantageous for subsequent therapeutic optical colonoscopy if polyps are detected. The average effective dose from CT colonography was estimated 8-10 $mS{\nu}$, which could be a significant dose if administered routinely within the population over many years. CT colonography should a) achieve at least 90% sensitivity and specificity in the size category from 6 and 10 mm, b) offer non-cathartic bowl preparation and c) be optimized and standardized CT parameters if it is to be used for mass screening. 3. There is little evidence that demonstrates, for whole-body scanning, the benefit outweighs the detriment. This test found large portion of patient(86~90.8%) had at least one abnormal finding, whereas only 2% were estimated to have clinically significant disease. Annual scans from ages 45 to 75 years would accrue an estimated lifetime cancer mortality risk of 1.9%. There is no group within the medical community that recommends whole-body CT. No good studies indicate the accuracy of screening CT, at this time. The benefit/risk balance for any of the commonly suggested CT screening techniques has yet to be established. These areas need further research. Therefore wild screening should be avoided.

Radiation Degradation Detection of LDPE Using Thermoluminescence Method (열발광 특성을 이용한 저밀도 폴리에틸렌의 방사선 열화 검출)

  • Lee, C.;Lee, K.W.;Park, J.N.;Lim, K.J.;Ryu, B.H.;Park, Y.G.;Kang, S.H.;Kim, K.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.43-46
    • /
    • 2001
  • Polymers are widely used as insulating materials at various part of power industry. However, electrical properties of these polymers are easily degraded with their working environments, especially radiation areas. In this research, radiation degradation of low density polyethylene (LDPE) used as cable insulation was evaluated with thermoluminescence characteristics. LDPE was irradiated with gamma ray up to 1000 kGy at a dose rate of 5 kGy/hr in the presence of air at room temperature. Each of the irradiated samples were carried out thermoluminescence analysis as a function of temperature. Interrelationships between thermoluminescence and dielectric characteristics and volume resistivity are investigated as well. The results of thermoluminescence analysis showed that those would be significant factors for evaluation of radiation degradation.

  • PDF

Effect of Storage Conditions on Graft of Polypropylene Non-woven Fabric Induced by Electron Beam (전자선 조사된 폴리프로필렌 부직포의 그라프트에 있어 보관조건이 미치는 영향)

  • Lee, Jin Young;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • In this study, we fabricated effect of storage conditions on graft of polypropylene (PP) non-woven fabric induced by electron beam. The electron beam irradiations on PP non-woven fabric were carried out over a range of irradiation doses from 25 to 100 kGy to make free radicals on fabric surface. The radical measurement was established by electron spin resonance (ESR) for confirming the changes of the alkyl radical and peroxy radical according to effect of storage time, storage temperature and atmosphere. It was observed that the free radicals were increased with irradiation dose and decreased with storage time due to the continuous oxidation. However, the radical extinction was significantly delayed due to reduced mobility of radicals at extremely low temperature. The degree of graft based on the analysis of ESR was investigated. The conditions of graft reaction were set at a temperature: $60^{\circ}C$, reaction time: 6 hours and styrene monomer concentration: 20 wt%.

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

A Study on the Treatment of Combine Electron Beam in the Treatment of Breast Cancer Tumor Bed (유방암 Tumor bed 치료 시 혼합 전자선 치료 방법에 대한 고찰)

  • Lee, Geon Ho;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Du Sang;Ahn, Min Woo;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • Purpose: The usefulness of using single-electron radiation for secondary radiotherapy of breast cancer patients after surgery is assessed and the use of a combine of different energy. Methods and materials : In this study, 40 patients (group A) using energy 6 MeV and 9 MeV, and 19 patients (group B) using a combine of 9 MeV and 12 MeV were studied among 59 patients who performed secondary care using combine electronic radiation. Each patient in each group, 6 MeV, 9 MeV, Combine(6 MeV / 9 MeV) and 9 MeV, 12 MeV, Combine (9 MeV / 12 MeV) were developed in different ways, and the maximum doses delivered to the original hospital, D95, D5, and $V_3$, $V_5$, $V_{10}$ were compared. Result: The D95 mean value of Group A treatment plan was $785.33{\pm}225.37cGy$, $1121.79{\pm}87.02cGy$ at 9 MeV, and $1010.98{\pm}111.17cGy$ at 6 MeV / 9 MeV, and the mean value at 6 MeV / 9 MeV was most appropriate for the dose. The mean values of the low dose area $V_3$ and $V_5$ in the lung of the breast direction being treated were $3.24{\pm}3.49%$ and $0.72{\pm}1.55%$ at 6 MeV, the highest 9 MeV at $7.25{\pm}4.59%$, $3.07{\pm}2.64%$, the lowest at 6 MeV. Maximum and average lung dose was $727.78{\pm}137.27cGy$ at 6 MeV / 9 MeV, $49.16{\pm}24.44cGy$, highest 9 MeV at $998.97{\pm}114.35cGy$, $85.33{\pm}41.18cGy$, and lowest 6 MeV at $387.78{\pm}208.88cGy$, $9.27{\pm}6.60cGy$. The value of $V_{10}$ was all close to zero. Group B appeared in the pattern of Group A. Conclusion: Relative differences in low-dose areas of the lungs $V_3$ and $V_5$ were seen and were most effective in the dose transfer of tumor bed in the application of combined energy. It is thought that the method of using electronic energy in further radiation treatments for breast cancer is a more effective way to use the energy effect of limiting energy resources, and that if you think about it again, it could be a little more beneficial radiation treatment for patients.

Storge Stability of Barleys Irradiated by Gamma-Ray (감마선 조사에 보리의 저장 안전성)

  • 김미라;손인숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1076-1081
    • /
    • 1999
  • Physicochemical, microbiological, and sensory properties of barleys irradiated by gamma ray at 1.2kGy, 10.1kGy, or 30.5kGy were investigated every 40 days during the storage at 25℃ and 50% relative humidity. Moisture content of the irradiated barleys decreased but crude lipid content increased during the storage. TBA values increased in proportion to the irradiation dose and to the storage period. In Hunter's color, L, a, and b values of 30.5kGy dose irradiated barleys were higher than those of the non irradiated barleys right after irradiation and this trend continued during the storage. Numbers of mesophilic and psychrophilic bacteria in the non irradiated barleys and 1.2kGy dose irradiated barleys were higher than those in the barleys irradiated at 10.1kGy and 30.5kGy during the storage. Numbers of yeasts and molds in the irradiated and non irradiated barleys were low and they did not greatly increase during the storage. In sensory evaluation, acidic odor of the barleys was strong at the 10.1kGy and 30.5 kGy dose irradiation but barley odor and humid odor were not significantly different among the groups depending upon the radiation dose and storage period.

  • PDF

Effects of Low-Dose Gamma Irradiation on Physicochemical Properties and Formation of Resistant Starch of Corn Starch (저선량 감마선 조사가 옥수수 녹말의 이화학 성질 및 저항전분 생성에 미치는 영향)

  • Kim, Sung-Kon;Kim, Jeong-Hee;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.378-384
    • /
    • 2006
  • Intrinsic viscosity of starch irradiated with Co-60 (0.25-9.1 kGy) significantly decreased, and swelling power and solubility measured at $80^{\circ}C$ linearly increased with increasing irradiated dose. Radiation treatment up to 1 kGy increased amylose content of starch. Water-binding capacity increased rapidly up to 3 kGy. Peak viscosity of irradiated starches by Rapid visco Analyser and Visco/amylo/Graph indicated that the decrease in peak viscosity was dose-dependent. Gamma irradiation showed no effect on endothermic temperatures of irradiated starches, but decreased endothermic enthalpy with increasing dose level. Viscosity of starch autoclaved at $120^{\circ}C$ and air-dried significantly decreased with increasing irradiation dose. Resistant starch content slightly decreased upon irradiation.

Preliminary Evaluation of Radiological Impact for Domestic On-road Transportation of Decommissioning Waste of Kori Unit 1

  • Dho, Ho-Seog;Seo, Myung-Hwan;Kim, Rin-Ah;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.537-548
    • /
    • 2020
  • Currently, radioactive waste for disposal has been restricted to low and intermediate level radioactive waste generated during operation of nuclear power plants, and these radioactive wastes were managed and disposed of the 200 L and 320 L of steel drums. However, it is expected that it will be difficult to manage a large amount of decommissioning waste of the Kori unit 1 with the existing drums and transportation containers. Accordingly, the KORAD is currently developing various and large-sized containers for packaging, transportation, and disposal of decommissioning waste. In this study, the radiation exposure doses of workers and the public were evaluated using RADTRAN computational analysis code in case of the domestic on-road transportation of new package and transportation containers under development. The results were compared with the domestic annual dose limit. In addition, the sensitivity of the expected exposure dose according to the change in the leakage rate of radionuclides in the waste packaging was evaluated. As a result of the evaluation, it was confirmed that the exposure dose under normal and accident condition was less than the domestic annual exposure dose limit. However, in the case of a number of loading and unloading operations, working systems should be prepared to reduce the exposure of workers.

Determination of Dose Correction Factor for Energy and Directional Dependence of the MOSFET Dosimeter in an Anthropomorphic Phantom (인형 모의피폭체내 MOSFET 선량계의 에너지 및 방향 의존도를 고려하기 위한 선량보정인자 결정)

  • Cho, Sung-Koo;Choi, Sang-Hyoun;Na, Seong-Ho;Kim, Chan-Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy Photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for $^{60}Co$ and $^{137}Cs$ photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom.