• Title/Summary/Keyword: Low tensile test

Search Result 572, Processing Time 0.034 seconds

Empirical Relationship Between SP-curves and Tensile Properties in Mn-Mo-Ni Low Alloy Steels (Mn-Mo-Ni 저합금강의 SP-곡선과 인장물성과의 실험적 관계)

  • Lee, Jae-Bong;Kim, Min-Chul;Park, Jai-Hak;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.554-562
    • /
    • 2004
  • An empirical relationship between parameters from SP curves and tensile properties has been systematically investigated by experimental tests and FEM simulations. A series of SP and tensile tests were performed. SP tests were also simulated by FE analysis with various tensile properties. It was found that the yield loads(Py) and the maximum loads( $P_{MAX}$) in SP curves were linearly related with the yield strength($\sigma$$_{o}$) and the tensile strength($\sigma$$_{UTS}$), respectively. The yield loads defined from the intersection point of two lines tangent to the elastic bending region and plastic bending region showed better relation to the yield strength than those from offset line. The maximum loads in SP curves showing plastic instability region was linearly related with the tensile strengths. The slope of SP curves in simulation results had a close correlation with the hardening coefficient and hardening strength as well.l.l.l.

Strength Change in Ultra Low Carbon Steel due to Carburizing Heat Treatment for Hot Press Forming (HPF 적용을 위한 극저탄소강의 강도에 미치는 침탄 열처리의 영향)

  • Kang, Soo Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.433-438
    • /
    • 2012
  • Strength change in ultra low carbon steel carburized at $880^{\circ}C$ and $930^{\circ}C$ for 10, 30, 60 and 120 minutes was investigated. The results were analyzed by a tensile test, chemical composition analysis, optical microscopy and scanning electron microscopy. Stress in the 0.5% strain specimen in the tensile test increased as the time treated at $880^{\circ}C$ and $930^{\circ}C$ increased, because the carbon diffusion layer and the martensite of the specimen increased with increasing treatment time. Martensite was found in the ferrite region in the specimen treated at $880^{\circ}C$, which is attributed to grain boundary diffusion.

A Study on the Characteristic of Weld Joint and Tensile Fracture of SUS304 and Cu High-Speed Dissimilar Lap Welds by Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Cu의 고속 겹치기 용접에서 접합부 및 인장시험 파단부의 특성에 관한 연구)

  • Lee, Su-Jin;Kim, Jong-Do;Katayama, Seiji
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2014
  • To develop and understand dissimilar metals joining of Stainless steel and Copper, ultra-high speed laser lap welding was studied using single mode fiber laser in this study. SUS304 and Cu have large differences in materials properties, and Cu and Fe have no intermetallic compounds by typical binary phase of Cu and Fe system. In this study, ultra-high speed lap welds of SUS304 and Cu dissimilar metals using single-mode fiber laser was generated, and weldability of the weld fusion zone was evaluated using a tensile shear test. To understand the phenomenon of tensile shear load, weld fusion zone of interface weld area and fracture parts after tensile shear test were observed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis system. And it was confirmed that Cu was easily melting and penetrating in the grain boundaries of SUS304 because of low melting temperature. And high thermal conductivity of copper occurred dissipate heat energy rapidly. These properties cause the solidification cracking in weld zone.

Determination of a critical damage by experiment and analysis of tensile test (인장시험의 실험과 해석 결과를 이용한 임계손상도의 결정)

  • Jang, S.M.;Eom, J.G.;Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.292-296
    • /
    • 2008
  • A new method of evaluating critical damage values of commercial materials is presented in this paper. The method is based on the previous study of the methodology [1] of acquisition of true stress-strain curves or flow stress curves over large strain from the tensile test in which the flow stress is described by the Hollomon law-like form, that is, by the strain dependent strength coefficient and the strain hardening exponent. The strain hardening exponent is calculated from the true strain at the necking point to meet the Considere condition. The strength coefficient is assumed to be constant before necking and represented by a piecewise linear function of strain after necking. With the predicted flow stress, a tensile test is simulated by a rigid-plastic finite element method with higher accuracy of less than 0.5% error between experiments and predictions. The instant when the fracture begins and thus the critical damage is obtained is determined by observing the stress variation at the necked region. It is assumed that the fracture due to damage begins when the pattern of stress around the necked region changes radically. The method is applied to evaluate the critical damage of a low carbon steel.

  • PDF

The Effect of Low Melting Point Phase on Mechanical Properties of Al-Cu-Li-X(In, Be) Alloys (Al-Cu-Li-X(In, Be) 합금의 기계적 성질에 미치는 저융점상의 영향)

  • Lee, J.S.;Lee, S.H.;Kim, S.W.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.245-254
    • /
    • 1995
  • The purpose of this study was to examine the effects of low melting point phase(LMPP) on mechanical properties in the Al-Cu-Li-X(In, Be) alloys. This study was performed by the differential scanning calorimetry(DSC), the transmission electron microscope(TEM), hardness test, tensile test and notch tensile test. The shape of LMPP in the specimens homogenized at $570^{\circ}C$ was film type due to remelting at grain boundary during homogenization. Low melting point phases had no effects on mechanical properties in the aging treated materials, because the density of LMPPs was low. Mechanical properties of the aging treated materials were affected by the density of matrix precipitation phases and grain sizes. For the In or In, Be added Al-Cu-Li alloys, the optimum solution treatment temperature was $550^{\circ}C$. The strength of Al-Cu-Li-In-Be $T_6$ treated alloy was higher than that of 2090-$T_8$ alloy.

  • PDF

Yield and Fracture of Paper

  • Park, Jong-moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.57-72
    • /
    • 1999
  • Traditional theories of the tensile failure of paper have assumed that uniform strain progresses throughout the sheet until an imperfection within the structure causes a catastrophic break. The resistance to tensile elongation is assumed to be elastic , at first, throughout the structure, followed by an overall plastic yield. However, linear image strain analysis (LISA) has demonstrated that the yield in tensile loading of paper is quite non-uniform throughout the structure, Traditional theories have failed to define the flaws that trigger catastrophic failure. It was assumed that a shive or perhaps a low basis weight area filled that role. Studies of the fracture mechanics of paper have typically utilized a well-defined flaw around which yield and failure could be examined . The flaw was a simple razor cut normal to the direction of tensile loading. Such testing is labeled mode I analysis. The included fla in the paper was always normal to the tensile loading direction, never at another orientation . However, shives or low basis weight zones are likely to be at random angular orientations in the sheet. The effects of angular flaws within the tensile test were examined. The strain energy density theory and experimental work demonstrate the change in crack propagation from mode I to mode IIas the initial flaw angle of crack propagation as a function of the initial flaw angle is predicted and experimentally demonstrated.

  • PDF

Impact on the characteristics by heating temperature change during orthodontic wire solder (치과교정용 wire 납착시 가열온도의 변화가 제특성에 미치는 영향)

  • Lee, Gyu-Sun
    • Journal of Technologic Dentistry
    • /
    • v.32 no.2
    • /
    • pp.65-74
    • /
    • 2010
  • Purpose : To understand the impact on the strength or restoration force by the change of heating temperature when soldering 18-8 stainless steel round wire which is the chrome-nickel class for dental orthodontic device production. Methods : The following conclusions were made upon the results from tensile strength test, 3 point bending test, and $90^{\circ}$ bending fatigue test with 24 samples that had been applied with condition 1 (before heat treatment - natural) and condition 2 (after heat treatment - mooring 30 seconds after heating up to $500^{\circ}C$, $700^{\circ}C$, and $900^{\circ}C$) to ${\phi}0.4mm$, ${\phi}0.7{\beta}mm$, 18-8 stainless steel round wire (spring hard) by Jinsung Company. Results : When it was heat-treated at $900^{\circ}C$, both ${\phi}0.4mm$ and ${\phi}0.7mm$ showed very low tensile strengths compared to the heat treated cases at $500^{\circ}C$ and $700^{\circ}C$ Yield strengths of both ${\phi}0.4mm$ and ${\phi}0.7mm$ showed very low compared to the heat treated cases at natural, $500^{\circ}C$, and $700^{\circ}C$, as well. Upon the results of 3 point bending test, the heat treated case at $900^{\circ}C$ showed very low in both ${\phi}0.4mm$ and ${\phi}0.7mm$, compared to the heat treated cases at natural, $500^{\circ}C$, and $700^{\circ}C$. Tensile strength of both ${\phi}0.4mm$ and ${\phi}0.7mm$ as well, showed very low compared to the heat treated cases at natural, $500^{\circ}C$, and $700^{\circ}C$. Upon the results of $90^{\circ}$ bending fatigue test, the heat treated case at $900^{\circ}C$ showed the highest wave node resistance in both ${\phi}0.4mm$ and ${\phi}0.7mm$. Conclusion : This study concluded that heating temperature change during wire soldering impacts on the characteristics of orthodntic wire.

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel (304 스테인리스강의 300℃에서 저주기 피로수명 증가)

  • Kim, Dae Whan;Han, Chang Hee;Lee, Bong Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.391-396
    • /
    • 2009
  • Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

The Correlation between Mixture Distress and Strength of Bituminous Concretes

  • 김광우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.67-73
    • /
    • 1990
  • Many distress mechanisms in pavement are known to be caused by the poor mechanical properties of bituminous concretes. Among many mechanical properties, tensile strength is one of the more important indicates that represent the resistance of pavement to traffic loading. However, there has been no relationship established between the strength and distress mechanisms. Therefore, this study was conducted to evaluate a correlation between the tensile strength value and the intensity of distress in bituminous concrete. Distress data were collected from an extensive field investigation over 77km of a four-lane highway in South Carolina, USA, and from laboratory prepared specimens in two phases of study. Strength data were obtained from a total of more than 400 field cores taken from the same highway and from 640marshall specimens of surface course mixture prepared in the laboratory. These data were analyzed using statistical test techniques. It was found from statistical analyses that the tensile strength of bituminous concrete had a strong relation with the pavement condition in the field. In the analysis of rutting and stripping, low strength concrete showed a higher distress rate in the mixture, and mixtures under distress in the field showed obviously reduced strength values. Stripping was found to be the most significant distress mechanism that was correlated with low strength bituminous concrete. Rutting appeared more frequently in a low strength pavement section of the highway as a sign of failure due to traffic loading.

  • PDF