• 제목/요약/키워드: Low temperature toughness

검색결과 197건 처리시간 0.018초

TMCP로 제조된 고강도 베이나이트강의 유효결정립도와 저온인성에 미치는 Cu와 B의 영향 (Effects of Cu and B on Effective Grain Size and Low-Temperature Toughness of Thermo-Mechanically Processed High-Strength Bainitic Steels)

  • 이승용;황병철
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.520-525
    • /
    • 2014
  • Effects of Cu and B on effective grain size and low-temperature toughness of thermo-mechanically processed high-strength bainitic steels were investigated in this study. The microstructure of the steel specimens was analyzed using optical, scanning, and transmission electron microscopy; their effective grain size was also characterized by electron back-scattered diffraction. To evaluate the strength and low-temperature toughness, tensile and Charpy impact tests were carried out. The specimens were composed of various low-temperature transformation products such as granular bainite (GB), degenerated upper bainite (DUB), lower bainite (LB), and lath marteniste (LM), dependent on the addition of Cu and B. The addition of Cu slightly increased the yield and tensile strength, but substantially deteriorated the low-temperature toughness because of the higher volume fraction of DUB with a large effective grain size. The specimen containing both Cu and B had the highest strength, but showed worse low-temperature toughness of higher ductile-brittle transition temperature (DBTT) and lower absorbed energy because it mostly consisted of LB and LM. In the B-added specimen, on the other hand, it was possible to obtain the best combination of high strength and good low-temperature toughness by decreasing the overall effective grain size via the appropriate formation of different low-temperature transformation products containing GB, DUB, and LB/LM.

페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향 (Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure)

  • 이승용;정상우;황병철
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.

내부식용 API 5L X70 다전극 SAW 용접부의 내면 저온인성에 미치는 외면 입열의 영향 (Effect of Heat Input of Outside Weld on Low Temperature Toughness of Inside Weld for Multiple Electrode SA Welded API 5L X70 with Sour Gas Resistance)

  • 안현준;이희근;박용규;은성수;강정윤
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.93-101
    • /
    • 2014
  • This study aims to investigate the effect of heat input of outside SAW weld on low temperature toughness($-20^{\circ}C$) of inside SAW weld for API 5L X70 with sour gas resistance. As increasing heat input of the outside weld, low temperature toughness of the inside weld was decreased. Especially, in spite of the same heat input, the value of low temperature toughness was fluctuated. On the basis of fracture and microstructure analysis, the low temperature toughness is correlated with the fracture area ratio of shear lips and four kinds of fracture sections. These sections were divided with size and shape of dimple correlated with grain boundary ferrite and cleavage correlated acicular and polygonal ferrite in grain. Therefore, it was seen that these sections were two of final solidification area in the inside weld and the outside weld, no reheated zone and reheated zone in the inside weld. In conclusion, it is thought that the difference of low temperature toughness at the same heat input is due to the fact that each of impact test specimens could have the different microstructure, even though the notch was machined under the error tolerance of 1mm. It is because the final solidification area of the inside weld is very narrow.

라인파이프용 고강도 열연강판의 기계적 성질 (Mechanical Properties of High Strength Hot Strips For Line Pipe Application)

  • 김문수;김준성;강기봉;노광섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.383-389
    • /
    • 1999
  • The purpose of this study was to investigate the effects of alloying and rolling condition on the mechanical properties and to develop high strength line pipe steels with good toughness. Tests were carried out by the laboratory experiments followed by mill trials and mass production. It was found that a small addition of microalloying elements, such as Nb, V with Mo or Ti remarkably increased the strength and toughness of hot strips. The optimum condition of thermomechanical rolling on low carbon microalloyed steel improved the toughness through the formation of a fine and uniform microstructure. Based on this mill trials following the fundamental research, the production technology of line pipe steels, grade X70∼X100 with high toughness, has been established. These grade steels exhibit excellent low temperature toughness (vTs= under -80$^{\circ}C$) and sufficient strength in both the base metal and the ERW seam weld position, respectively.

  • PDF

LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과 (Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank)

  • 김정규;김철수;조동혁;김도식;윤인수
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.

2상 스테인리스강 용접부의 저온충격인성과 내응력 부식성에 관한 연구 (Low Temperature Impact Toughness and Stress Corrosion Resistance in Duplex Stainless Steel Welds)

  • 김효종;이성근
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.151-160
    • /
    • 1995
  • The characteristics of low temperature impact toughness and stress corrosion resistance at boiling MgCl$_2$ solution of GTA and SMA weld of duplex stainless steels have been investigated. The impact toughness was highest at the GTAW weld metal and lowest at the SMAW weld, which was almost the same as that of the SMAW heat-affected zone. This was attributable to influence of austenite-ferrite phase balance, and the degree and nature of precipitation that occurred during welding. The SCC resistance of the weldments was slightly higher than that of the base metal, whereas no difference in the SCC resistance was found between two different weldments.

  • PDF

복합조직강의 마찰용접부에 대한 동적파괴특성 (The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • 제7권3호
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

Ni-Mo-Cr계 저합금강의 천이온도영역에서의 파괴인성에 미치는 Ni 및 Cr 함량의 영향 (Effects of Ni and Cr Contents on the Fracture Toughness of Ni-Mo-Cr Low Alloy Steels in the Transition Temperature Region)

  • 이기형;박상규;김민철;이봉상;위당문
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.533-541
    • /
    • 2009
  • Materials used for a reactor pressure vessel(RPV) are required high strength and toughness, which determine the safety margin and life of a reactor. Ni-Mo-Cr low alloy steel shows better mechanical properties than existing RPV steels due to higher Ni and Cr contents compared to the existing RPV steels. The present study focuses on effects of Ni, Cr contents on the cleavage fracture toughness of Ni-Mo-Cr low alloy steels in the transition temperature region. The fracture toughness was characterized by a 3-point bend test of precracked Charpy V-notch(PCVN) specimens based on ASTM E1921-08. The test results indicated that the fracture toughness was considerably improved with an increase of Ni and Cr contents. Especially, control of Cr content was more effective in improving fracture toughness than manipulating Ni content, though Charpy impact toughness was changed more extensively by adjusting Ni content. These differences between changes in the fracture toughness and that in the impact toughness were derived from microstructural features, such as martensite lath size and carbide precipitation behavior.