• Title/Summary/Keyword: Low temperature oxidation

Search Result 589, Processing Time 0.022 seconds

Micro Structure and Surface Characteristics of NiCr Thin films Prepared by DC Magnetron Sputter according to Annealing Conditions (DC 마그네트론 스퍼터링 NiCr 박막의 열처리 조건에 따른 미세구조 및 표면특성)

  • Kwon, Yong;Kim, Nam-Hoon;Choi, Dong-You;Lee, Woo-Sun;Seo, Yong-Jin;Park, Jin-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.554-559
    • /
    • 2005
  • Ni/Cr thin film is very interesting material as thin film resistors, filaments, and humidity sensors because their relatively large resistivity, more resistant to oxidation and a low temperature coefficient of resistance (TCR). These interesting properties of Ni/Cr thin films are dependent upon the preparation conditions including the deposition environment and subsequent annealing treatments. Ni/Cr thin films of 250 nm were deposited by DC magnetron sputtering on $Al_2O_3/Si$ substrate with 2-inch Ni/Cr (80/20) alloy target at room temperature for 45 minutes. Annealing treatments were performed at $400^{\circ}C,\;500^{\circ}C,\;and\;600^{\circ}C$ for 6 hours in air or $H_2$ ambient, respectively. The clear crystal boundaries without crystal growth and the densification were accomplished when the pores were disappeared in air ambient. Most of surface was oxidic including NiO, $Ni_2O_3$ and $Cr_xO_y$(x=1,2, y=2,3) after annealing in air ambient. The crystal growth in $H_2$ ambient was formed and stabilized by combination with each other due to the suppression of oxidized substance on film surface. Most oxidic Ni was restored when the oxidic Cr was present due to its stability in high-temperature $H_2$ ambient.

The effect of moisture on SCR reaction of NMO (Natural Manganese Ore) (천연망간광석 SCR 반응에서 수분의 영향)

  • Kim, Sungsu;Hong, Sungchang
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.350-355
    • /
    • 2007
  • The effect of moisture in flue gas on SCR reaction of NMO (Natural Manganese Ore) was studied. The experiments were performed over NMO with NO, $NH_3$ at independent condition or simultaneous condition. $NH_3$ can be oxidized at low temperature by the lattice oxygen in NMO catalyst. The concentration of NO and $NO_2$ by $NH_3$ oxidation with moisture is higher above $300^{\circ}C$ than that without moisture. Moisture would competitively adsorb with NO and $NH_3$ on NMO catalyst. It caused poor NOx conversion to compete against $H_2O$. Besides the NOx conversion efficiency was reduced at below $250^{\circ}C$ because of the dipped $H_2O$ competitively adsorbed $NH_3$. The reactivity of NMO varied with the calcination temperature and the optimum calcination temperature was $400^{\circ}C$ regardless $H_2O$.

Effects of Annealing Temperature on the Local Current Conduction of Ferromagnetic Tunnel Junction (열처리에 따른 강자성 터널링 접합의 국소전도특성)

  • Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku;Li, Ying;Park, Bum-Chan;Kim, Cheol-Gi;Kim, Chong-Oh
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.233-238
    • /
    • 2003
  • Ferromagnetic tunnel junctions, Ta/Cu/Ta/NiFe/Cu/$Mn_{75}$ $Ir_{25}$ $Co_{70}$ $Fe_{30}$/Al-oxide, were fabricated by do magnetron sputtering and plasma oxidation process. The effect of annealing temperature on the local transport properties of the ferromagnetic tunnel junctions was studied using contact-mode Atomic Force Microscopy (AFM). The current images reflected the distribution of the barrier height determined by local I-V analysis. The contrast of the current image became more homogeneous and smooth after annealing at $280^{\circ}C$. And the average barrier height $\phi_{ave}$ increased and its standard deviation $\sigma_{\phi}$ X decreased. For the cases of the annealing temperature more than $300^{\circ}C$, the contrast of the current image became large again. And the average barrier height $\phi_{ave}$ decreased and its standard deviation $\sigma_{\phi}$ increased. Also, the current histogram had a long tail in the high current region and became asymmetric. This result means the generation of the leakage current that is resulted from the local generation of a low barrier height region. In order to obtain the high tunnel magnetoresistance(TMR) ratio, the increase of the average barrier height and the decrease of the barrier height fluctuation must be strictly controlled.led.

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.

Extension of Low Temperature Combustion Regime by Turbocharging Using Diesel and Biodiesel Fuels (과급에 의한 디젤 및 바이오디젤의 저온연소 운전영역 확장에 관한 연구)

  • Jang, Jae-Hoon;Oh, Seung-Mook;Lee, Yong-Gyu;Lee, Sun-Youp
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1065-1072
    • /
    • 2012
  • Due to its oxygen (O) content, biodiesel (BD) is advantageous in that it lowers PM emissions in CI engines. Therefore, BD is considered one of the best candidates for low temperature combustion (LTC) operation because its use can extend the regime for simultaneous reduction of PM and $NO_x$. Thus, in this study, LTC operation was realized using BD and diesel with a 5~7% $O_2$ fraction. Engine test results show that the use of BD increased the efficiency and reduced emissions such as PM, THC, and CO; furthermore, IMEP reduced by 10~12% owing to the lower LHV of the fuel. In particular, smoke was suppressed by up to 90% because O atoms in the BD enhanced the soot oxidation reaction. To compensate the IMEP loss, turbocharging (TC) was then tested, and the results showed that the power output increased and PM was reduced further. Moreover, TC in BD engine operation allowed a similar level of reduction in both $NO_x$ and PM at 11~12% $O_2$ fraction, suggesting that there is a potential to widen the operating range by the combination of TC and BD.

Effect of Low Molecular Weight Silk Fibroin on the Inhibition of Tyrosinase Activity

  • Kang, Gyung Don;Lee, Ki Hoon;Shin, Bong Seob;Nahm, Joong Hee;Park, Young Hwan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • Low molecular weight silk fibroin (LMSF), which was prepared by hydrolysis of silk fibroin using high-temperature and high-pressure method, was found to inhibit the oxidation of L-3,4,-dihydroxyphenylalanine (L-DOPA) catalyzed by mushroom tyrosinase (EC 1.14.18.1). LMSF contained mostly free amino acids such as L-glycine, L-alanine, and L-serine and oligopeptides, mainly glycine-alanine dimer. As a result of analyzing the inhibition kinetics from Lineweaver-Burk plots, L-glycine and glycine-alanine dimer showed noncompetitive behavior while uncompetitive behavior was observed in L-alanine, and L-serine. When weight percent concentration of ${ID_50}$ was compared, L-glycine was most effective on the inhibition and LMSF was also good enough for the inhibition effect of tyrosinase activity. LMSF showed a mixed-type inhibition and the inhibitory mechanism of LMSF might be caused by free amino acids and oligopeptides. As a result of spectroscopic observation with time, initial rate of increase of DOPAchrome decreased remarkably and the time to reach maximum absorbance increased as an increase of the concentration of L-glycine, meaning that L-glycine made itself mainly responsible for the formation of chelate with ${Cu^2+}$ in tyrosinase. However, in case of L-alanine, L-serine, and especially glycine-alanine dimmer, the production of DOPAchrome after an arrival at maximum absorbance decreased, indicating the production of adducts through the reaction with DOPAquinone.

Potential Antioxidant Peptides in Rice Wine

  • Rhee, Sook-Jong;Lee, Chung-Yung J.;Kim, Mi-Ryung;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.715-721
    • /
    • 2004
  • Many food protein hydrolysates have been shown to have antioxidant activities, and recent research focuses on low molecular peptides produced during hydrolysis of food protein. Korean rice wine contains about 60-70% of protein at dry base and originates from raw materials. It has been suggested that the protein is transformed into low molecular weight peptides, and have antioxidant activity during fermentation. The objectives of this study were to evaluate the antioxidant activity of the pre-purified and purified peptides found in Korean rice wine and to identify the responsible peptides. The wine extract of Samhaeju, a traditional Korean rice wine made by low temperature fermentation, was evaporated at $35^{\circ}C$. The two methods employed in the evaluation of antioxidant activity were the DPPH radical scavenging method and the beta-carotene bleaching test. The pre-purified samples showed 808 AAC (Antioxidant Activity Coefficient) and 56.5% AOA (Antioxidant Activity), which were higher than $\alpha$-tocopherol (572 AAC and 78% AOA). The rice wine extract was separated by reversed-phase HPLC. The protective effect of the four most antioxidant active fractions were tested for t-butyl hydroperoxide induced oxidation of healthy human erythrocytes and the byproduct was determined by malondialdehyde formation. Fraction No.5 showed 35% lower MDA concentration as compared to the control. The peptides were further purified using consecutive chromatographic methods and 4 antioxidant peptides were isolated. The amino acid sequences of the peptides were identified as Ile-His-His, Val- Val-His(Asn), Leu-Val-Pro, and Leu(Val)-Lys-Arg-Pro. The AAC value of the synthetic form of the identified peptides was the highest for Ile-His-His.

Antioxidant Effect of Histidine Containing Low Molecular Weight Peptide Isolated from Skipjack Boiled Extract (가다랑어 자숙액에서 분리한 히스티딘 함유 저분자 펩타이드의 항산화 효과)

  • Cheong, Hyo-Sook
    • Korean journal of food and cookery science
    • /
    • v.23 no.2 s.98
    • /
    • pp.221-226
    • /
    • 2007
  • This study was carried out to investigate the optimun conditions for the isolation of low molecular weight peptides containing histidine, and to evaluate the antioxidant effects of skipjack boiled extracts(SBE). The results are summarized as follows : L-histidine contents of the ordinary muscle and dark muscle extracts were $ 83.1{\pm}1.75{\mu}M/g\;and\;11.0{\pm}2.39\;{\mu}M/g$, respectively. The L-histidine level of the dark muscle was much lower than that of ordinary muscle in the SBE. The extracts were treated with alcalase and neutrase under different pH levels, temperatures, and times. The optimum hydrolysis conditions of SBE were pH 7.0 and a $60^{\circ}$C temperature for 2 hr in the batch reactor, which hydrolyzed 63% of the SBE. HPLC analysis showed a removing effect of the ultrafiltration permeate (UFP) to high molecular weight impurities in SBE. SBE and pure carnosine participated as inhibiting agents to, which was confirmed through the autoxidation processing of linoleic acid. UFP treatment improved the inhibiting ability of SBE to the autoxidation of linoleic acid. The reducing power of the UFP-treated ordinary muscle extracts were 10-fold higher than the dark muscle extracts, and 0.7-fold higher than 20 mM pure carnosine. The UFP-treated ordinary muscle extracts had greater reducing power activity than pure carnosine. The scavenging activities on DPPH radical of the different treated-SBE and pure carnosine were also investigated. Scavenging activities of the ordinary and dark muscle extracts and the pure carnosine were 90%, 70%, and 45%, respectively. In summary, Skipjack boiled extracts (SBE) demonstrated that low molecular weight peptides containing histidine are capable of inhibiting lipid oxidation. They also possessed effective abilities as free radical scavengers and reducing agents, and these activities may increase with increasing concentrations.

SOx and NOx removal performance by a wet-pulse discharge complex system (습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성)

  • Park, Hyunjin;Lee, Whanyoung;Park, Munlye;Noh, Hakjae;You, Junggu;Han, Bangwoo;Hong, Keejung
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature ($NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거)

  • Byun, Young-Chul;Lee, Ki-Man;Koh, Dong-Jun;Shin, Dong-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).